228 resultados para diene
Resumo:
Syntheses and structural characterization of Ni(II) chelates of a new series of symmetric and unsymmetric tetradentate linear ligands are described. Preparative routes involve either the direct reaction between a metal complex and arene diazonium diazonium salts or a simple metal incorporation into the independently synthesized ligands. Recent X-ray structure determination of 4,9-dimethyl-5,8-diazadodeca-4,8-diene-2,11-dione-3,10-di(4′-methyl phenyl) hydrazonatonickel(II) complex reveals the geometry around the Ni(II) to be very close to square planar. The expected distortion because of the disposition of bulky aromatic groups on the neighbouring nitrogens is minimized by their projection in the opposite directions from the plane. PMP, IR and electronic spectral data for the complexes are quite in agreement with this structure.
Resumo:
The reaction of the title complexes (FIG. 1) with N-bromosuccinimide or bromine in chloroform yields isomeric bromo complexes on substitution of the γ-CH carbon proton by bromine. The brominated products have been characterised by ir, pmr, electronic absorption spectra, conductivity and magnetic susceptibility measurements. The linkage isomerisation of the brominated products in chloroform has been shown to depend on the diamine residue.
Resumo:
7a,14a-Dihydroxypregna-4,16-diene-3,20- dione, C21H2804, M r = 344.45, orthorhombic, P212121, a = 7.136 (1), b = 12.342 (1), c = 20.049 (3)/k, V= 1765.7 (3)/k 3, Z = 4, Dx = 1.295 g cm -3, A(Cu Kte) = 1.5418/k, /z = 6.7 cm- a, F(000) = 744, T = 293 K, R = 0.048 for 1345 observations. The A ring may be described as in a l a,2flhalf- chair conformation or a l a-sofa conformation. The B and C rings adopt normal chair conformations and the D ring has a 14a-envelope conforma tion. The molecules are held together by a hydrogen bond [0(3)...0(7)= 2.767 A].
Resumo:
Enantiospecific syntheses of 1-epi- (or cis-)-preisothapsa-2,8(12)-diene and 1-epi- and 1,8-diepipreisothapsa-2-en-12-ols, starting from the readily available monoterpene (R)-carvone, have been accomplished.
Resumo:
The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.
Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.
Resumo:
To study the brittle-ductile transition (BDT) of polypropylene (PP)/ethylene-propylene-diene monomer (EPDM) blends induced by size, temperature, and time, the toughness of the PP/EPDM blends was investigated over wide ranges of EPDM content, temperature, and strain rate. The toughness of the blends was determined from the tensile fracture energy of the side-edge notched samples. The concept of interparticle distance (ID) was introduced into this study to probe the size effect on the BDT of PP/EPDM blends, whereas the effect of time corresponded to that of strain rate. The BDT induced by size, temperature, and time was observed in the fracture energy versus ID, temperature, and strain rate. The critical BDT temperatures for various EPDM contents at different initial strain rates were obtained from these transitions. The critical interparticle distance (IDc) increased nonlinearly with increasing temperature, and when the initial strain rate was lower, the IDc was larger. Moreover, the variation of the reciprocal of the initial strain rate with the reciprocal of temperature followed different straight lines for various EPDM contents. These straight lines were with the same slope.
Resumo:
In this article, ethylene-propylene-diene-rubber (EPDM) was epoxidized with an in situ formed performic acid to prepare epoxided EPDM (eEPDM). The eEPDM together with the introduction of PP-g-AA was used to compatibilize PP/EPDM blends in a Haake mixer. FTIR results showed that the EPDM had been epoxidized. The reaction between epoxy groups in the eEPDM and carboxylic acid groups in PP-g-AA had taken place, and PP-g-EPDM copolymers were formed in situ. Torque test results showed that the actual temperature and torque values for the compatibilized blends were higher than that of the uncompatibilized blends. Scanning electron microscopy (SEM) observation showed that the dispersed phase domain size of compatibilized blends and the uncompatibilized blends were 0.5 and 1.5 mu m, respectively. The eEPDM together with the introduction of PP-g-AA could compatibilize PP/EPDM blends effectively. Notched Izod impact tests showed that the formation of PP-g-EPDM copolymer improved the impact strength and yielded a tougher PP blend.
Resumo:
Blends of nylon-6 and epoxidised ethylene propylene diene (eEPDM) rubber were prepared through reactive mixing. It is found that the toughness of nylon-6 can be much improved by this method, and that the particle size of eEPDM is much smaller than that of unexpoxidised EPDM (uEPDM) rubber in a nylon-6 matrix. This indicates that the epoxy group in eEPDM could react with a nylon-6 end group to form a graft copolymer which could act as an interfacial compatibiliser between the nylon-6 and the eEPDM rubber dispersed phase. (C) 1998 Elsevier Science Ltd. All rights reserved.
Resumo:
The title compound, C24H24O3Si2, is a twofold symmetric silicocrown ether with the two dimethylsilyl groups attached to the O atoms of 1,1'-bi-2-naphthol, and bridged by another O atom.
Resumo:
A super-tough polycarbonate (PC) blend was obtained by using epoxidized ethylene propylene diene (eEPDM) rubber as modifier. The notched Izod impact strength of PC/eEPDM (96/4) blend shows a great improvement, with a value about 25 times of that of pure PC. Finely and homogeneously dispersed rubber particles (0.2-0.8 mu m) in the PC matrix indicated good adhesion between the eEPDM rubber phase and the PC matrix. (C) 1997 Elsevier Science Ltd.