31 resultados para diC14-amidine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cationic lipids-DNA complexes (lipoplexes) have been used for delivery of nucleic acids into cells in vitro and in vivo. Despite the fact that, over the last decade, significant progress in the understanding of the cellular pathways and mechanisms involved in lipoplexes-mediated gene transfection have been achieved, a convincing relationship between the structure of lipoplexes and their in vivo and in vitro transfection activity is still missing. How does DNA affect the lipid packing and what are the consequences for transfection efficiency is the point we want to address here. We investigated the bilayer organization in cationic liposomes by electron spin resonance (ESR). Phospholipids spin labeled at the 5th and 16th carbon atoms were incorporated into the DNA/diC14-amidine complex. Our data demonstrate that electrostatic interactions involved in the formation of DNA-cationic lipid complex modify the packing of the cationic lipid membrane. DNA rigidifies the amidine fluid bilayer and fluidizes the amidine rigid bilayer just below the gel-fluid transition temperature. These effects were not observed with single nucleotides and are clearly related to the repetitive charged motif present in the DNA chain and not to a charge-charge interaction. These modifications of the initial lipid packing of the cationic lipid may reorient its cellular pathway towards different routes. A better knowledge of the cationic lipid packing before and after interaction with DNA may therefore contribute to the design of lipoplexes capable to reach specific cellular targets. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oligonucleotides have been extensively used in basic research of gene expression and function, vaccine design, and allergy and cancer therapy. Several oligonucleotide-based formulations have reached the clinical trial phase and one is already on the market. All these applications, however, are dependent on suitable carriers that protect oligonucleotides against degradation and improve their capture by target cells. The cationic lipid diC14-amidine efficiently delivers nucleic acids to mammalian cells. It was recently shown that diC14-amidine bilayers present an interdigitated phase which strongly correlates with a potent fusogenic activity at low temperatures. Interdigitated phases correspond to very ordered gel phases where the two bilayer leaflets are merged; they usually result from perturbations at the interfacial region such as modifications of the polar headgroup area or dehydration of the bilayer. Interdigitation has been described for asymmetric lipids or mixed-chain lipids of different chain lengths and for lipids with large effective headgroup sizes. It has also been described for symmetric lipids under pressure modifications or in the presence of alcohol, glycerol, acetonitrile, polymyxin B, or ions like thiocyanate. Surprisingly, the role of polyelectrolytes on membrane interdigitation has been only poorly investigated. In the present work, we use dynamic light scattering (DLS), differential scanning calorimetry (DSC), and electron spin resonance (ESR) to explore the effect of a small single-stranded oligonucleotide (ODN) polyelectrolyte on the structure and colloid stability of interdigitated diC14-amidine membranes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this work, we investigated the properties of a fusogenic cationic lipid, diC14-amidine, and show that this lipid possesses per se the capacity to adopt either an interdigitated structure (below and around its transition temperature) or a lamellar structure (above the transition temperature). To provide experimental evidence of this lipid bilayer organization, phospholipids spin-labeled at different positions of the hydrocarbon chain were incorporated into the membrane and their electron spin resonance (ESR) spectra were recorded at different temperatures. For comparison, similar experiments were performed with dimyristoyl phosphatidylcholine, a zwitterionic lipid (DMPC) which adopts a bilayer organization over a broad temperature range. Lipid mixing between diC14-amidine and asolectin liposomes was more efficient below (10-15 degrees C) than above the transition temperature (above 25 degrees C). This temperature-dependent "fusogenic" activity of diC14-amidine liposomes is opposite to what has been observed so far for peptides or virus-induced fusion. Altogether, our data suggest that interdigitatiori is a highly fusogenic state and that interdigitation-mediated fusion occurs via an unusual temperature-dependent mechanism that remains to be deciphered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some novel ferrocenylphosphine-amidine ligands with central and planar chirality were prepared from (R,S-p)-PPFNH2-R 3 and its diastereomer (S,S-p)-PPFNH2 3a. The efficiency and diastereomeric impact of these ferrocenylphosphine-amidine ligands in the palladium-catalyzed asymmetric allylic substitution was examined, and up to 96% e.e. with 98% yield was achieved by the use of ligand (R,S-p)-4a with a methyl group in the amidino moiety. The results also indicated that (R)-central chirality and (S-p)-planar chirality in these ferrocenylphosphine-amidine ligands were matched for the palladium-catalyzed asymmetric allylic alkylation. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formation and the isolation of fluoroboron salts, (D2BF2+)(PF6-), (DD'BF2+)(PF6-) and (D3BF2+)(PF6-)2, have been carried out. 1,8-Diazabicyclo [5,4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4,3,O]non-5-ene (DBN), extremely strong organic bases, were introduced into the fluoroboron cation systems and induced a complicated redistribution reaction in the D/BF3/BC13 systems. The result was the formation of all BFnCI4-n-, D.BFnCI3-n and fluoroboron cation species which were detected by 19p and 11B NMR spectrometry. The displacement reaction of CI- from these D.BFnCI3-n (n = 1 and 2) species by the second entering ligand is much faster than in other nitrogen donor containing systems which have been previously studied. Tetramethylguanidine, oxazolines and thiazolines can also produce similar reactions in D/BF3/BCI3 systems, but no significant BFnC4-n- species were observed. As well as influences of their basicity and their steric hindrance, N=C-R(X) (X = N, 0 or S) and N=C( X)2 (X = N or S) structures of ligands have significant effects on the fonnationof fluoroboron cations and the related NMR parameters. D3BF2+ and some D2BF2+ show the expected inertness, but (DBU)2BF2+ shows an interestingly high reactivity. (D2BF2+)(X-) formed from weak organic bases such as pyridine can react with stronger organic bases and form DD'BF2+ and D'2BF2+ in acetone or nitromethane. Fast atom bombardment mass spectrometry is doubly meaningful to this work. Firstly, FABMS can be directly applied to the complicated fluoroboron cation containing solution systems as an excellent complementary technique to multinuclear NMR. Secondly, the gas-phase ion substitution reaction of (D2BF2+)(PF6-) with the strong organic bases is successfully observed in a FABMS ion source when the B-N bond is not too strong in these cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thesis (doctoral)--Albertus-Universität zu Königsberg i. Pr., 1892.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents evidence for the interactions of several classes of cationic amphiphilic drugs including the phenothiazines, aminoquinolines, biguanides, and aromatic diamidines, with lipid A, the endotoxic principle of lipopolysaccharides. The interactions of the drugs were quantitatively assessed by fluorescence methods. The affinities of the drugs for lipid A parallel their endotoxin-antagonistic effects in the Limulus gelation assay. Dicationic compounds bind lipid A with greater affinity; the affinity of such molecules increases exponentially as a function of the distance between the basic moieties. The bis-amidine drug - pentamidine - examined in greater detail, binds lipid A with high affinity (apparent K-d: 0.12 mu M), and LPS, probably due to simultaneous interactions of the terminal amidine groups with the anionic phosphates on lipid A. The sequestration of endotoxin by pentamidine reduces its propensity to bind to cells, and the complex exhibits attenuated toxicity in biological assays. These results have implications in the development of therapeutic strategies against endotoxin-related disease states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The diruthenium(III) complex [Ru2O(O2CAr)2(MeCN)4(PPh3)2](ClO4)2 (1), on reaction with 1,2-diaminoethane (en) in MeOH at 25-degrees-C, undergoes nucleophilic attacks at the carbon of two facial MeCN ligands to form [(Ru2O)-O-III(O2CAr)2-{NH2CH2CH2NHC(Me)NH}2(PPh3)2](ClO4)2 (2) (Ar = C6H4-p-X, X = H, Me, OMe, Cl) containing two seven-membered amino-amidine chelating ligands. The molecular structure of 2 with Ar = C6H4-p-OMe was determined by X-ray crystallography. Crystal data are as follows: triclinic, P1BAR, a = 13.942 (5) angstrom, b = 14.528 (2) angstrom, c = 21.758 (6) angstrom, alpha = 109.50 (2)-degrees, beta = 92.52 (3)-degrees, gamma = 112.61 (2)-degrees, V = 3759 (2) angstrom 3, and Z = 2. The complex has an {Ru2(mu-O)(mu-O2CAr2)2(2+)} core. The Ru-Ru and average Ru-O(oxo) distances and the Ru-O-Ru angle are 3.280 (2) angstrom, 1.887 [8] angstrom, and 120.7 (4)-degrees, respectively. The amino group of the chelating ligand is trans to the mu-oxo ligand. The nucleophilic attacks take place on the MeCN ligands cis to the mu-oxo ligand. The visible spectra of 2 in CHCl3 display an absorption band at 565 nm. The H-1 NMR spectra of 2 in CDCl3 are indicative of the formation of an amino-amidine ligand. Complex 2 exhibits metal-centered quasireversible one-electron oxidation and reduction processes in the potential ranges +0.9 to +1.0 V and -0.3 to -0.5 V (vs SCE), respectively, involving the Ru(III)2/Ru(III)Ru(IV) and Ru(III)2/Ru(II)Ru(III) redox couples in CH2Cl2 containing 0.1 M TBAP. The mechanistic aspects of the nucleophilic reaction are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

聚酰亚胺是一类综合性能优异的耐热高分子材料,不仅具有很高的热性能,机械性能,和化学稳定性,还具有较低的介电常数和热膨胀系数,使它在航空,航天工业,微电子工业等诸多领域获得了广泛的应用。研究发现芳杂环的引入能为聚酰亚胺带来一定特殊的性能,因而由芳杂环单体合成的聚酰亚胺一直备受关注。近年来由含氮杂环的单体合成的聚酰亚胺及其性能不断被报道,这些聚合物具有很优异的性能。研究表明这些优异的性能与酰亚胺环的对称性,芳香性和杂原子带来的极性有关。吡啶、嘧啶等芳杂环是刚性的芳杂环分子,具有很好的耐热性能及化学稳定性能,而且杂环中的N 原子又可与金属离子配位和质子化。因而,含吡啶(或嘧啶)环聚合物在具有很好的热稳定性及化学稳定性同时,还会具有较好的可加工性。本论文以硝基取代的vinamidinium salts,amidine salts和易烯醇化的羰基化合物为原料,通过在碱性条件下的环化反应得到得含吡啶环(或嘧啶环)的硝基化合物;硝基化合物用Pd/C和水合肼还原得到棒状含氮芳杂环二胺:2,5-二(4-氨基苯基)嘧啶,2-氨基-5-(4-氨基苯基)嘧啶,2-(4-氨基苯基)-5-氨基嘧啶,2,5-二(4-氨基苯基)吡啶,和2-(4-氨基苯基)-5-氨基吡啶。通过1H-NMR、13C-NMR、IR、MS及元素分析确证了含氮芳杂环二胺及其中间产物的结构。这种二胺或加一定量对苯二胺与均苯二酐(PMDA)或联苯二酐(BPDA)通过两步法聚合获得一系列聚酰亚胺,通过红外、动态力学、静态力学、热重分析、广角X-Ray衍射等实验测试了该类聚合物的结构、热性能、机械性能及结晶性能。研究表明,所得聚酰亚胺的分子链有很高的规整性,表现出很好的化学稳定性,优异的热性能和机械性能。当PPD的含量为50%时,由相同二酐单体所得的聚合物具有最好的综合性能,其中杂环中氮原子的极性对维持聚合物的热稳定性和聚合物在高温条件下的机械性能性起着很重要的作用。并将PPD的含量为50%的聚酰胺酸胶液通过干-湿纺,热亚胺化,和高温牵伸获得聚酰亚胺纤维,并研究了亚胺化条件和牵伸条件对聚酰亚胺纤维性能的影响。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Competition dialysis was used to study the interactions of 13 substituted aromatic diamidine compounds with 13 nucleic acid structures and sequences. The results show a striking selectivity of these compounds for the triplex structure poly dA:(poly dT)(2), a novel aspect of their interaction with nucleic acids not previously described. The triplex selectivity of selected compounds was confirmed by thermal denaturation studies. Triplex selectivity was found to be modulated by the location of amidine substiuents on the core phenyl-furan-phenyl ring scaffold. Molecular models were constructed to rationalize the triplex selectivity of DB359, the most selective compound in the series. Its triplex selectivity was found to arise from optimal ring stacking on base triplets, along with proper positioning of its amidine substituents to occupy the minor and the major-minor grooves of the triplex. New insights into the molecular recognition of nucleic acid structures emerged from these studies, adding to the list of available design principles for selectively targeting DNA and RNA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

2-(4-Aminophenyl)-5-aminopyrimidine (4) is synthesized via a condensation reaction of vinamidium salts and amidine chloride salts, followed by hydrazine palladium catalyzed reduction. A series of novel homo- and copolyimides containing pyrimidine unit are prepared from the diamine and 1,4-phenylenediamine (PDA) with pyromellitic dianhydride (PMDA) or 3,3',4,4'-biphenyl tertracarboxylic dianhydride (BPDA) via a conventional two-step thermal imidization method. The poly(amic acid) precursors had inherent viscosities of 0.97-4.38 dL/g (c = 0.5 g/dL, in DMAc, 30 degrees C) and all of them could be cast and thermally converted into flexible and tough polyimide films. All of the polyimides showed excellent thermal stability and mechanical properties. The glass transition temperatures of the resulting polyimides are in the range of 307-434 degrees C and the 10% weight loss temperature is in the range of 556-609 degrees C under air. The polyimide films possess strength at break in the range of 185-271 MPa, elongations at break in the range of 6.8-51%, and tensile modulus in the range of 3.5-6.46 GPa. The polymer films are insoluble in common organic solvents, exhibiting high chemical resistance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research was to investigate the synthesis of nitrile oxides and to study their reactivity in 1,3-dipolar cycloadditions with formamidines. Chapter one looks at the literature surrounding the 1,3-dipolar cycloaddition reaction. It explores the generation of 1,3-dipoles (mainly nitrile oxides) and dipolarophiles (predominantly amidines). It discusses the potential synthetic uses of the 1,3-dipolar cycloadducts. It examines both and inter- and intra-molecular cycloaddition reactions. It recognises the use of the 1,3-dipolar cycloadditions as a successful method in building natural products and oxadiazolines. The decomposition of oxadiazolines as a route to nitriles is also outlined in this chapter. Chapter two discusses the results of this research candidate. The preparation of nitrile oxide precursors - hydroximoyl halides - is outlined at first. The generation of nitrile oxides is then demonstrated, followed by the preparation of furoxans. Methods for preparing the reference materials (nitriles and ureas), which result from decomposition of oxadiazolines, then follow. The preparation of series of Δ2-1,2,4- oxadiazolines via the 1,3-dipolar cycloaddition reaction is illustrated in this chapter. The selectivity of the addition of nitrile oxides to dipolarophiles was tested by competition reactions, which are also described in this chapter. NMR techniques were used in the study of the kinetics of the 1,3-dipolar cycloadditions used for the preparation of a series of Δ2-1,2,4-oxadiazolines, which is addressed in this chapter. Chapter three charts the experimental procedures followed to gain results which are discussed in chapter two. It also outlines all analytical data produced during the course of this research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A high-resolution crystal structure is reported for d(TpA)*, the intramolecular thymine–adenine photoadduct that is produced by direct ultraviolet excitation of the dinucleoside monophosphate d(TpA). It confirms the presence of a central 1,3-diazacyclooctatriene ring linking the remnants of the T and A bases, as previously deduced from heteronuclear NMR measurements by Zhao et al. (The structure of d(TpA)*, the major photoproduct of thymidylyl-(3'-5')-deoxyadenosine. Nucleic Acids Res., 1996, 24, 1554–1560). Within the crystal, the d(TpA)* molecules exist as zwitterions with a protonated amidine fragment of the eight-membered ring neutralizing the charge of the internucleotide phosphate monoanion. The absolute configuration at the original thymine C5 and C6 atoms is determined as 5S,6R. This is consistent with d(TpA)* arising by valence isomerization of a precursor cyclobutane photoproduct with cis–syn stereochemistry that is generated by [2 + 2] photoaddition of the thymine 5,6-double bond across the C6 and C5 positions of adenine. This mode of photoaddition should be favoured by the stacked conformation of adjacent T and A bases in B-form DNA. It is probable that the primary photoreaction is mechanistically analogous to pyrimidine dimerization despite having a much lower quantum yield.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dimethylallylguanidine, also known as galegine, isolated from Galega officinalis, has been shown to have weight reducing properties in vivo. Substitution of the guanidine group with an N-cyano group and replacement of guanidine with amidine, pyrimidine, pyridine, or the imidazole moieties removed the weight reducing properties when evaluated in BALB/c mice. However, retention of the guanidine and replacement of the dimethylallyl group by a series of functionalized benzyl substituents was shown to exhibit, and in some cases significantly improve, the weight reducing properties of these molecules in BALB/c, ob/ob, and diet induced obesity (DIO) mice models. The lead compound identified, across all models, was 1-(4-chlorobenzyl)guanidine hemisulfate, which gave an average daily weight difference (% from time-matched controls; +/- SEM) of -19.7 +/- 1.0, -11.0 +/- 0.7, and -7.3 +/- 0.8 in BALB/c, ob/ob, and DIO models, respectively.