993 resultados para deterministic model
Resumo:
General introductionThe Human Immunodeficiency/Acquired Immunodeficiency Syndrome (HIV/AIDS) epidemic, despite recent encouraging announcements by the World Health Organization (WHO) is still today one of the world's major health care challenges.The present work lies in the field of health care management, in particular, we aim to evaluate the behavioural and non-behavioural interventions against HIV/AIDS in developing countries through a deterministic simulation model, both in human and economic terms. We will focus on assessing the effectiveness of the antiretroviral therapies (ART) in heterosexual populations living in lesser developed countries where the epidemic has generalized (formerly defined by the WHO as type II countries). The model is calibrated using Botswana as a case study, however our model can be adapted to other countries with similar transmission dynamics.The first part of this thesis consists of reviewing the main mathematical concepts describing the transmission of infectious agents in general but with a focus on human immunodeficiency virus (HIV) transmission. We also review deterministic models assessing HIV interventions with a focus on models aimed at African countries. This review helps us to recognize the need for a generic model and allows us to define a typical structure of such a generic deterministic model.The second part describes the main feed-back loops underlying the dynamics of HIV transmission. These loops represent the foundation of our model. This part also provides a detailed description of the model, including the various infected and non-infected population groups, the type of sexual relationships, the infection matrices, important factors impacting HIV transmission such as condom use, other sexually transmitted diseases (STD) and male circumcision. We also included in the model a dynamic life expectancy calculator which, to our knowledge, is a unique feature allowing more realistic cost-efficiency calculations. Various intervention scenarios are evaluated using the model, each of them including ART in combination with other interventions, namely: circumcision, campaigns aimed at behavioral change (Abstain, Be faithful or use Condoms also named ABC campaigns), and treatment of other STD. A cost efficiency analysis (CEA) is performed for each scenario. The CEA consists of measuring the cost per disability-adjusted life year (DALY) averted. This part also describes the model calibration and validation, including a sensitivity analysis.The third part reports the results and discusses the model limitations. In particular, we argue that the combination of ART and ABC campaigns and ART and treatment of other STDs are the most cost-efficient interventions through 2020. The main model limitations include modeling the complexity of sexual relationships, omission of international migration and ignoring variability in infectiousness according to the AIDS stage.The fourth part reviews the major contributions of the thesis and discusses model generalizability and flexibility. Finally, we conclude that by selecting the adequate interventions mix, policy makers can significantly reduce the adult prevalence in Botswana in the coming twenty years providing the country and its donors can bear the cost involved.Part I: Context and literature reviewIn this section, after a brief introduction to the general literature we focus in section two on the key mathematical concepts describing the transmission of infectious agents in general with a focus on HIV transmission. Section three provides a description of HIV policy models, with a focus on deterministic models. This leads us in section four to envision the need for a generic deterministic HIV policy model and briefly describe the structure of such a generic model applicable to countries with generalized HIV/AIDS epidemic, also defined as pattern II countries by the WHO.
Resumo:
This article discusses, from the standpoint of cellular biology, the deterministic and indeterministic androgenesis theories. The role of the vacuole and of various types of stresses on deviation of the microspore from normal development and the point where androgenetic competence is acquired are examined. Based on extensive literature review and data on wheat studies from our laboratory, a model for androgenetic capacity of pollen grain is proposed. A two point deterministic model for in vitro androgenesis is our proposal for acquisition of androgenetic potential of the pollen grain: the first switch point would be early meiosis and the second switch point the uninucleate pollen stage, because the elimination of cytoplasmatic sporophytic determinants takes place at those two strategic moments. Any abnormality in this process allowing the maintenance of sporophytic informational molecules results in the absence of establishment of a gametophytic program, allowing the reactivation of the embryogenic process
Resumo:
Nature is full of phenomena which we call "chaotic", the weather being a prime example. What we mean by this is that we cannot predict it to any significant accuracy, either because the system is inherently complex, or because some of the governing factors are not deterministic. However, during recent years it has become clear that random behaviour can occur even in very simple systems with very few number of degrees of freedom, without any need for complexity or indeterminacy. The discovery that chaos can be generated even with the help of systems having completely deterministic rules - often models of natural phenomena - has stimulated a lo; of research interest recently. Not that this chaos has no underlying order, but it is of a subtle kind, that has taken a great deal of ingenuity to unravel. In the present thesis, the author introduce a new nonlinear model, a ‘modulated’ logistic map, and analyse it from the view point of ‘deterministic chaos‘.
Resumo:
This dissertation has as its goal the quantitative evaluation of the application of coupled hydrodynamic, ecological and clarity models, to address the deterministic prediction of water clarity in lakes and reservoirs. Prediction of water clarity is somewhat unique, insofar as it represents the integrated and coupled effects of a broad range of individual water quality components. These include the biological components such as phytoplankton, together with the associated cycles of nutrients that are needed to sustain their popuiations, and abiotic components such as suspended particles that may be introduced by streams, atmospheric deposition or sediment resuspension. Changes in clarity induced by either component will feed back on the phytoplankton dynamics, as incident light also affects biological growth. Thus ability to successfully model changes in clarity will by necessity have to achieve the correct modeling of these other water quality parameters. Water clarity is also unique in that it may be one of the earliest and most easily detected wamings of the acceleration of the process of eutrophication in a water body.
Resumo:
Membrane bioreactors (MBRs) are a combination of activated sludge bioreactors and membrane filtration, enabling high quality effluent with a small footprint. However, they can be beset by fouling, which causes an increase in transmembrane pressure (TMP). Modelling and simulation of changes in TMP could be useful to describe fouling through the identification of the most relevant operating conditions. Using experimental data from a MBR pilot plant operated for 462days, two different models were developed: a deterministic model using activated sludge model n°2d (ASM2d) for the biological component and a resistance in-series model for the filtration component as well as a data-driven model based on multivariable regressions. Once validated, these models were used to describe membrane fouling (as changes in TMP over time) under different operating conditions. The deterministic model performed better at higher temperatures (>20°C), constant operating conditions (DO set-point, membrane air-flow, pH and ORP), and high mixed liquor suspended solids (>6.9gL-1) and flux changes. At low pH (<7) or periods with higher pH changes, the data-driven model was more accurate. Changes in the DO set-point of the aerobic reactor that affected the TMP were also better described by the data-driven model. By combining the use of both models, a better description of fouling can be achieved under different operating conditions
Resumo:
Maize is one of the most important crops in the world. The products generated from this crop are largely used in the starch industry, the animal and human nutrition sector, and biomass energy production and refineries. For these reasons, there is much interest in figuring the potential grain yield of maize genotypes in relation to the environment in which they will be grown, as the productivity directly affects agribusiness or farm profitability. Questions like these can be investigated with ecophysiological crop models, which can be organized according to different philosophies and structures. The main objective of this work is to conceptualize a stochastic model for predicting maize grain yield and productivity under different conditions of water supply while considering the uncertainties of daily climate data. Therefore, one focus is to explain the model construction in detail, and the other is to present some results in light of the philosophy adopted. A deterministic model was built as the basis for the stochastic model. The former performed well in terms of the curve shape of the above-ground dry matter over time as well as the grain yield under full and moderate water deficit conditions. Through the use of a triangular distribution for the harvest index and a bivariate normal distribution of the averaged daily solar radiation and air temperature, the stochastic model satisfactorily simulated grain productivity, i.e., it was found that 10,604 kg ha(-1) is the most likely grain productivity, very similar to the productivity simulated by the deterministic model and for the real conditions based on a field experiment.
Resumo:
Generalised epileptic seizures are frequently accompanied by sudden, reversible transitions from low amplitude, irregular background activity to high amplitude, regular spike-wave discharges (SWD) in the EEG. The underlying mechanisms responsible for SWD generation and for the apparently spontaneous transitions to SWD and back again are still not fully understood. Specifically, the role of spatial cortico-cortical interactions in ictogenesis is not well studied. We present a macroscopic, neural mass model of a cortical column which includes two distinct time scales of inhibition. This model can produce both an oscillatory background and a pathological SWD rhythm. We demonstrate that coupling two of these cortical columns can lead to a bistability between out-of-phase, low amplitude background dynamics and in-phase, high amplitude SWD activity. Stimuli can cause state-dependent transitions from background into SWD. In an extended local area of cortex, spatial heterogeneities in a model parameter can lead to spontaneous reversible transitions from a desynchronised background to synchronous SWD due to intermittency. The deterministic model is therefore capable of producing absence seizure-like events without any time dependent adjustment of model parameters. The emergence of such mechanisms due to spatial coupling demonstrates the importance of spatial interactions in modelling ictal dynamics, and in the study of ictogenesis.
Resumo:
This work is based on the prototype High Engineering Test Reactor (HTTR) of the Japan Agency of Energy Atomic (JAEA). Its objective is to describe an adequate deterministic model to be used in the assessment of its design safety margins via damage domains. The concept of damage domain is defined and it is shown its relevance in the ongoing effort to apply dynamic risk assessment methods and tools based on the Theory of Stimulated Dynamics (TSD). To illustrate, we present results of an abnormal control rod (CR) withdrawal during subcritical condition and its comparison with results obtained by JAEA. No attempt is made yet to actually assess the detailed scenarios, rather to show how the approach may handle events of its kind
Resumo:
A stochastic metapopulation model accounting for habitat dynamics is presented. This is the stochastic SIS logistic model with the novel aspect that it incorporates varying carrying capacity. We present results of Kurtz and Barbour, that provide deterministic and diffusion approximations for a wide class of stochastic models, in a form that most easily allows their direct application to population models. These results are used to show that a suitably scaled version of the metapopulation model converges, uniformly in probability over finite time intervals, to a deterministic model previously studied in the ecological literature. Additionally, they allow us to establish a bivariate normal approximation to the quasi-stationary distribution of the process. This allows us to consider the effects of habitat dynamics on metapopulation modelling through a comparison with the stochastic SIS logistic model and provides an effective means for modelling metapopulations inhabiting dynamic landscapes.
Resumo:
A deterministic model of tuberculosis in Cameroon is designed and analyzed with respect to its transmission dynamics. The model includes lack of access to treatment and weak diagnosis capacity as well as both frequency-and density-dependent transmissions. It is shown that the model is mathematically well-posed and epidemiologically reasonable. Solutions are non-negative and bounded whenever the initial values are non-negative. A sensitivity analysis of model parameters is performed and the most sensitive ones are identified by means of a state-of-the-art Gauss-Newton method. In particular, parameters representing the proportion of individuals having access to medical facilities are seen to have a large impact on the dynamics of the disease. The model predicts that a gradual increase of these parameters could significantly reduce the disease burden on the population within the next 15 years.
Resumo:
We investigate key characteristics of Ca²⁺ puffs in deterministic and stochastic frameworks that all incorporate the cellular morphology of IP[subscript]3 receptor channel clusters. In a first step, we numerically study Ca²⁺ liberation in a three dimensional representation of a cluster environment with reaction-diffusion dynamics in both the cytosol and the lumen. These simulations reveal that Ca²⁺ concentrations at a releasing cluster range from 80 µM to 170 µM and equilibrate almost instantaneously on the time scale of the release duration. These highly elevated Ca²⁺ concentrations eliminate Ca²⁺ oscillations in a deterministic model of an IP[subscript]3R channel cluster at physiological parameter values as revealed by a linear stability analysis. The reason lies in the saturation of all feedback processes in the IP[subscript]3R gating dynamics, so that only fluctuations can restore experimentally observed Ca²⁺ oscillations. In this spirit, we derive master equations that allow us to analytically quantify the onset of Ca²⁺ puffs and hence the stochastic time scale of intracellular Ca²⁺ dynamics. Moving up the spatial scale, we suggest to formulate cellular dynamics in terms of waiting time distribution functions. This approach prevents the state space explosion that is typical for the description of cellular dynamics based on channel states and still contains information on molecular fluctuations. We illustrate this method by studying global Ca²⁺ oscillations.
Resumo:
The economic occupation of an area of 500 ha for Piracicaba was studied with the irrigated cultures of maize, tomato, sugarcane and beans, having used models of deterministic linear programming and linear programming including risk for the Target-Motad model, where two situations had been analyzed. In the deterministic model the area was the restrictive factor and the water was not restrictive for none of the tested situations. For the first situation the gotten maximum income was of R$ 1,883,372.87 and for the second situation it was of R$ 1,821,772.40. In the model including risk a producer that accepts risk can in the first situation get the maximum income of R$ 1,883,372. 87 with a minimum risk of R$ 350 year(-1), and in the second situation R$ 1,821,772.40 with a minimum risk of R$ 40 year(-1). Already a producer averse to the risk can get in the first situation a maximum income of R$ 1,775,974.81 with null risk and for the second situation R$ 1.707.706, 26 with null risk, both without water restriction. These results stand out the importance of the inclusion of the risk in supplying alternative occupations to the producer, allowing to a producer taking of decision considered the risk aversion and the pretension of income.
Resumo:
Front dynamics modeled by a reaction-diffusion equation are studied under the influence of spatiotemporal structured noises. An effective deterministic model is analytical derived where the noise parameters, intensity, correlation time, and correlation length appear explicitly. The different effects of these parameters are discussed for the Ginzburg-Landau and Schlögl models. We obtain an analytical expression for the front velocity as a function of the noise parameters. Numerical simulation results are in a good agreement with the theoretical predictions.
Resumo:
Malaria continues to infect millions and kill hundreds of thousands of people worldwide each year, despite over a century of research and attempts to control and eliminate this infectious disease. Challenges such as the development and spread of drug resistant malaria parasites, insecticide resistance to mosquitoes, climate change, the presence of individuals with subpatent malaria infections which normally are asymptomatic and behavioral plasticity in the mosquito hinder the prospects of malaria control and elimination. In this thesis, mathematical models of malaria transmission and control that address the role of drug resistance, immunity, iron supplementation and anemia, immigration and visitation, and the presence of asymptomatic carriers in malaria transmission are developed. A within-host mathematical model of severe Plasmodium falciparum malaria is also developed. First, a deterministic mathematical model for transmission of antimalarial drug resistance parasites with superinfection is developed and analyzed. The possibility of increase in the risk of superinfection due to iron supplementation and fortification in malaria endemic areas is discussed. The model results calls upon stakeholders to weigh the pros and cons of iron supplementation to individuals living in malaria endemic regions. Second, a deterministic model of transmission of drug resistant malaria parasites, including the inflow of infective immigrants, is presented and analyzed. The optimal control theory is applied to this model to study the impact of various malaria and vector control strategies, such as screening of immigrants, treatment of drug-sensitive infections, treatment of drug-resistant infections, and the use of insecticide-treated bed nets and indoor spraying of mosquitoes. The results of the model emphasize the importance of using a combination of all four controls tools for effective malaria intervention. Next, a two-age-class mathematical model for malaria transmission with asymptomatic carriers is developed and analyzed. In development of this model, four possible control measures are analyzed: the use of long-lasting treated mosquito nets, indoor residual spraying, screening and treatment of symptomatic, and screening and treatment of asymptomatic individuals. The numerical results show that a disease-free equilibrium can be attained if all four control measures are used. A common pitfall for most epidemiological models is the absence of real data; model-based conclusions have to be drawn based on uncertain parameter values. In this thesis, an approach to study the robustness of optimal control solutions under such parameter uncertainty is presented. Numerical analysis of the optimal control problem in the presence of parameter uncertainty demonstrate the robustness of the optimal control approach that: when a comprehensive control strategy is used the main conclusions of the optimal control remain unchanged, even if inevitable variability remains in the control profiles. The results provide a promising framework for the design of cost-effective strategies for disease control with multiple interventions, even under considerable uncertainty of model parameters. Finally, a separate work modeling the within-host Plasmodium falciparum infection in humans is presented. The developed model allows re-infection of already-infected red blood cells. The model hypothesizes that in severe malaria due to parasite quest for survival and rapid multiplication, the Plasmodium falciparum can be absorbed in the already-infected red blood cells which accelerates the rupture rate and consequently cause anemia. Analysis of the model and parameter identifiability using Markov chain Monte Carlo methods is presented.