216 resultados para determinism
Resumo:
The purpose of this study was to evaluate the determinism of the AS-lnterface network and the 3 main families of control systems, which may use it, namely PLC, PC and RTOS. During the course of this study the PROFIBUS and Ethernet field level networks were also considered in order to ensure that they would not introduce unacceptable latencies into the overall control system. This research demonstrated that an incorrectly configured Ethernet network introduces unacceptable variable duration latencies into the control system, thus care must be exercised if the determinism of a control system is not to be compromised. This study introduces a new concept of using statistics and process capability metrics in the form of CPk values, to specify how suitable a control system is for a given control task. The PLC systems, which were tested, demonstrated extremely deterministic responses, but when a large number of iterations were introduced in the user program, the mean control system latency was much too great for an AS-I network. Thus the PLC was found to be unsuitable for an AS-I network if a large, complex user program Is required. The PC systems, which were tested were non-deterministic and had latencies of variable duration. These latencies became extremely exaggerated when a graphing ActiveX was included in the control application. These PC systems also exhibited a non-normal frequency distribution of control system latencies, and as such are unsuitable for implementation with an AS-I network. The RTOS system, which was tested, overcame the problems identified with the PLC systems and produced an extremely deterministic response, even when a large number of iterations were introduced in the user program. The RTOS system, which was tested, is capable of providing a suitable deterministic control system response, even when an extremely large, complex user program is required.
Resumo:
Dans cette thèse l’ancienne question philosophique “tout événement a-t-il une cause ?” sera examinée à la lumière de la mécanique quantique et de la théorie des probabilités. Aussi bien en physique qu’en philosophie des sciences la position orthodoxe maintient que le monde physique est indéterministe. Au niveau fondamental de la réalité physique – au niveau quantique – les événements se passeraient sans causes, mais par chance, par hasard ‘irréductible’. Le théorème physique le plus précis qui mène à cette conclusion est le théorème de Bell. Ici les prémisses de ce théorème seront réexaminées. Il sera rappelé que d’autres solutions au théorème que l’indéterminisme sont envisageables, dont certaines sont connues mais négligées, comme le ‘superdéterminisme’. Mais il sera argué que d’autres solutions compatibles avec le déterminisme existent, notamment en étudiant des systèmes physiques modèles. Une des conclusions générales de cette thèse est que l’interprétation du théorème de Bell et de la mécanique quantique dépend crucialement des prémisses philosophiques desquelles on part. Par exemple, au sein de la vision d’un Spinoza, le monde quantique peut bien être compris comme étant déterministe. Mais il est argué qu’aussi un déterminisme nettement moins radical que celui de Spinoza n’est pas éliminé par les expériences physiques. Si cela est vrai, le débat ‘déterminisme – indéterminisme’ n’est pas décidé au laboratoire : il reste philosophique et ouvert – contrairement à ce que l’on pense souvent. Dans la deuxième partie de cette thèse un modèle pour l’interprétation de la probabilité sera proposé. Une étude conceptuelle de la notion de probabilité indique que l’hypothèse du déterminisme aide à mieux comprendre ce que c’est qu’un ‘système probabiliste’. Il semble que le déterminisme peut répondre à certaines questions pour lesquelles l’indéterminisme n’a pas de réponses. Pour cette raison nous conclurons que la conjecture de Laplace – à savoir que la théorie des probabilités présuppose une réalité déterministe sous-jacente – garde toute sa légitimité. Dans cette thèse aussi bien les méthodes de la philosophie que de la physique seront utilisées. Il apparaît que les deux domaines sont ici solidement reliés, et qu’ils offrent un vaste potentiel de fertilisation croisée – donc bidirectionnelle.
Resumo:
Multiple equilibria in a coupled ocean–atmosphere–sea ice general circulation model (GCM) of an aquaplanet with many degrees of freedom are studied. Three different stable states are found for exactly the same set of parameters and external forcings: a cold state in which a polar sea ice cap extends into the midlatitudes; a warm state, which is ice free; and a completely sea ice–covered “snowball” state. Although low-order energy balance models of the climate are known to exhibit intransitivity (i.e., more than one climate state for a given set of governing equations), the results reported here are the first to demonstrate that this is a property of a complex coupled climate model with a consistent set of equations representing the 3D dynamics of the ocean and atmosphere. The coupled model notably includes atmospheric synoptic systems, large-scale circulation of the ocean, a fully active hydrological cycle, sea ice, and a seasonal cycle. There are no flux adjustments, with the system being solely forced by incoming solar radiation at the top of the atmosphere. It is demonstrated that the multiple equilibria owe their existence to the presence of meridional structure in ocean heat transport: namely, a large heat transport out of the tropics and a relatively weak high-latitude transport. The associated large midlatitude convergence of ocean heat transport leads to a preferred latitude at which the sea ice edge can rest. The mechanism operates in two very different ocean circulation regimes, suggesting that the stabilization of the large ice cap could be a robust feature of the climate system. Finally, the role of ocean heat convergence in permitting multiple equilibria is further explored in simpler models: an atmospheric GCM coupled to a slab mixed layer ocean and an energy balance model
Resumo:
This is the first half of a two-part paper which deals with the social theoretic assumptions underlying system dynamics. The motivation is that clarification in this area can help mainstream social scientists to understand how our field relates to their literature, methods and concerns. Part I has two main sections. The aim of the first is to answer the question: How do the ideas of system dynamics relate to traditional social theories? The theoretic assumptions of the field are seldom explicit but rather are implicit in its practice. The range of system dynamics practice is therefore considered and related to a framework - widely used in both operational research (OR) and systems science - that organises the assumptions behind traditional social theoretic paradigms. Distinct and surprisingly varied groupings of practice are identified, making it difficult to place system dynamics in any one paradigm with any certainty. The difficulties of establishing a social theoretic home for system dynamics are exemplified in the second main section. This is done by considering the question: Is system dynamics deterministic? An analysis shows that attempts to relate system dynamics to strict notions of voluntarism or determinism quickly indicate that the field does not fit with either pole of this dichotomous, and strictly paradigmatic, view. Part I therefore concludes that definitively placing system dynamics with respect to traditional social theories is highly problematic. The scene is therefore set for Part II of the paper, which proposes an innovative and potentially fruitful resolution to this problem.
Resumo:
Background: Deterministic evolution, phylogenetic contingency and evolutionary chance each can influence patterns of morphological diversification during adaptive radiation. In comparative studies of replicate radiations, convergence in a common morphospace implicates determinism, whereas non-convergence suggests the importance of contingency or chance. Methodology/Principal Findings: The endemic cichlid fish assemblages of the three African great lakes have evolved similar sets of ecomorphs but show evidence of non-convergence when compared in a common morphospace, suggesting the importance of contingency and/or chance. We then analyzed the morphological diversity of each assemblage independently and compared their axes of diversification in the unconstrained global morphospace. We find that despite differences in phylogenetic composition, invasion history, and ecological setting, the three assemblages are diversifying along parallel axes through morphospace and have nearly identical variance-covariance structures among morphological elements. Conclusions/Significance: By demonstrating that replicate adaptive radiations are diverging along parallel axes, we have shown that non-convergence in the common morphospace is associated with convergence in the global morphospace. Applying these complimentary analyses to future comparative studies will improve our understanding of the relationship between morphological convergence and non-convergence, and the roles of contingency, chance and determinism in driving morphological diversification.
Resumo:
The rank-based nonlinear predictability score was recently introduced as a test for determinism in point processes. We here adapt this measure to time series sampled from time-continuous flows. We use noisy Lorenz signals to compare this approach against a classical amplitude-based nonlinear prediction error. Both measures show an almost identical robustness against Gaussian white noise. In contrast, when the amplitude distribution of the noise has a narrower central peak and heavier tails than the normal distribution, the rank-based nonlinear predictability score outperforms the amplitude-based nonlinear prediction error. For this type of noise, the nonlinear predictability score has a higher sensitivity for deterministic structure in noisy signals. It also yields a higher statistical power in a surrogate test of the null hypothesis of linear stochastic correlated signals. We show the high relevance of this improved performance in an application to electroencephalographic (EEG) recordings from epilepsy patients. Here the nonlinear predictability score again appears of higher sensitivity to nonrandomness. Importantly, it yields an improved contrast between signals recorded from brain areas where the first ictal EEG signal changes were detected (focal EEG signals) versus signals recorded from brain areas that were not involved at seizure onset (nonfocal EEG signals).
Resumo:
We describe the current status of and provide performance results for a prototype compiler of Prolog to C, ciaocc. ciaocc is novel in that it is designed to accept different kinds of high-level information, typically obtained via an automatic analysis of the initial Prolog program and expressed in a standardized language of assertions. This information is used to optimize the resulting C code, which is then processed by an off-the-shelf C compiler. The basic translation process essentially mimics the unfolding of a bytecode emulator with respect to the particular bytecode corresponding to the Prolog program. This is facilitated by a flexible design of the instructions and their lower-level components. This approach allows reusing a sizable amount of the machinery of the bytecode emulator: predicates already written in C, data definitions, memory management routines and áreas, etc., as well as mixing emulated bytecode with native code in a relatively straightforward way. We report on the performance of programs compiled by the current versión of the system, both with and without analysis information.
Improving the compilation of prolog to C using type and determinism information: Preliminary results
Resumo:
We describe the current status of and provide preliminary performance results for a compiler of Prolog to C. The compiler is novel in that it is designed to accept different kinds of high-level information (typically obtained via an analysis of the initial Prolog program and expressed in a standardized language of assertions) and use this information to optimize the resulting C code, which is then further processed by an off-the-shelf C compiler. The basic translation process used essentially mimics an unfolding of a C-coded bytecode emúlator with respect to the particular bytecode corresponding to the Prolog program. Optimizations are then applied to this unfolded program. This is facilitated by a more flexible design of the bytecode instructions and their lower-level components. This approach allows reusing a sizable amount of the machinery of the bytecode emulator: ancillary pieces of C code, data definitions, memory management routines and áreas, etc., as well as mixing bytecode emulated code with natively compiled code in a relatively straightforward way We report on the performance of programs compiled by the current versión of the system, both with and without analysis information.
Resumo:
The testing of concurrent software components can be difficult due to the inherent non-determinism present in these components. For example, if the same test case is run multiple times, it may produce different results. This non-determinism may lead to problems with determining expected outputs. In this paper, we present and discuss several possible solutions to this problem in the context of testing concurrent Java components using the ConAn testing tool. We then present a recent extension to the tool that provides a general solution to this problem that is sufficient to deal with the level of non-determinism that we have encountered in testing over 20 components with ConAn. © 2005 IEEE