898 resultados para detection systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Securing IT infrastructures of our modern lives is a challenging task because of their increasing complexity, scale and agile nature. Monolithic approaches such as using stand-alone firewalls and IDS devices for protecting the perimeter cannot cope with complex malwares and multistep attacks. Collaborative security emerges as a promising approach. But, research results in collaborative security are not mature, yet, and they require continuous evaluation and testing. In this work, we present CIDE, a Collaborative Intrusion Detection Extension for the network security simulation platform ( NeSSi 2 ). Built-in functionalities include dynamic group formation based on node preferences, group-internal communication, group management and an approach for handling the infection process for malware-based attacks. The CIDE simulation environment provides functionalities for easy implementation of collaborating nodes in large-scale setups. We evaluate the group communication mechanism on the one hand and provide a case study and evaluate our collaborative security evaluation platform in a signature exchange scenario on the other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of the project is to reduce the risk of serious damage by exotic pests to the valuable timber resources of Fiji, Vanuatu and Australia by establishing efficient detection systems for target pests in high hazard sites. In particular, the project aims to minimise losses in the valuable plantations of Fiji and the emerging plantation industry of Vanuatu. This is part of a 'neighbourhood watch' approach to incursion management that will benefit all regional countries, including Australia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fusion of multiple intrusion detection systems results in a more reliable and accurate detection for a wider class of intrusions. The paper presented here introduces the mathematical basis for sensor fusion and provides enough support for the acceptability of sensor fusion in performance enhancement of intrusion detection systems. The sensor fusion system is characterized and modeled with no knowledge of the intrusion detection systems and the intrusion detection data. The theoretical analysis is supported with an experimental illustration with three of the available intrusion detection systems using the DARPA 1999 evaluation data set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The IDS (Intrusion Detection System) is a common means of protecting networked systems from attack or malicious misuse. The development and rollout of an IDS can take many different forms in terms of equipment, protocols, connectivity, cost and automation. This is particularly true of WIDS (Wireless Intrusion Detection Systems) which have many more opportunities and challenges associated with data transmission through an open, shared medium.
The operation of a WIDS is a multistep process from origination of an attack through to human readable evaluation. Attention to the performance of each of the processes in the chain from attack detection to evaluation is imperative if an optimum solution is to be sought. At present, research focuses very much on each discrete aspect of a WIDS with little consideration to the operation of the whole system. Taking a holistic view of the technology shows the interconnectivity and inter-dependence between stages, leading to improvements and novel research areas for investigation.
This chapter will outline the general structure of Wireless Intrusion Detection Systems and briefly describe the functions of each development stage, categorised into the following 6 areas:
• Threat Identification,
• Architecture,
• Data Collection,
• Intrusion Detection,
• Alert Correlation,
• Evaluation.
These topics will be considered in broad terms designed for those new to the area. Focus will be placed on ensuring the readers are aware of the impact of choices made at early stages in WIDS development on future stages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A monoclonal antibody that recognises components of the wall of sporangia of Peronospora destructor was raised. Tests using spores of higher fungi and other species of mildew demonstrated the specificity of the monoclonal. The antibody was used to develop lateral flow devices for sporangia of P. destructor. A competitive lateral flow format was developed which could detect onion downy mildew sporangia. Five-microliter gold anti-mouse IgM solution pre-mixed with 10 μl of P. destructor monoclonal antibody (EMA 242) proved the optimal concentration for detection of sporangia of P. destructor when applied to sample pads of lateral flow devices. Limits of approximately 500 sporangia of P. destructor could be detected by the absence of a test line on the lateral flow device within test samples. Using a scanning densitometer improved the sensitivity of detection. Further development and validation of the test is required if it is to be used for risk assessments of onion downy mildew in the field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mobile malwares are increasing with the growing number of Mobile users. Mobile malwares can perform several operations which lead to cybersecurity threats such as, stealing financial or personal information, installing malicious applications, sending premium SMS, creating backdoors, keylogging and crypto-ransomware attacks. Knowing the fact that there are many illegitimate Applications available on the App stores, most of the mobile users remain careless about the security of their Mobile devices and become the potential victim of these threats. Previous studies have shown that not every antivirus is capable of detecting all the threats; due to the fact that Mobile malwares use advance techniques to avoid detection. A Network-based IDS at the operator side will bring an extra layer of security to the subscribers and can detect many advanced threats by analyzing their traffic patterns. Machine Learning(ML) will provide the ability to these systems to detect unknown threats for which signatures are not yet known. This research is focused on the evaluation of Machine Learning classifiers in Network-based Intrusion detection systems for Mobile Networks. In this study, different techniques of Network-based intrusion detection with their advantages, disadvantages and state of the art in Hybrid solutions are discussed. Finally, a ML based NIDS is proposed which will work as a subsystem, to Network-based IDS deployed by Mobile Operators, that can help in detecting unknown threats and reducing false positives. In this research, several ML classifiers were implemented and evaluated. This study is focused on Android-based malwares, as Android is the most popular OS among users, hence most targeted by cyber criminals. Supervised ML algorithms based classifiers were built using the dataset which contained the labeled instances of relevant features. These features were extracted from the traffic generated by samples of several malware families and benign applications. These classifiers were able to detect malicious traffic patterns with the TPR upto 99.6% during Cross-validation test. Also, several experiments were conducted to detect unknown malware traffic and to detect false positives. These classifiers were able to detect unknown threats with the Accuracy of 97.5%. These classifiers could be integrated with current NIDS', which use signatures, statistical or knowledge-based techniques to detect malicious traffic. Technique to integrate the output from ML classifier with traditional NIDS is discussed and proposed for future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prevalence and dissemination of Salmonella in a Brazilian poultry slaughterhouse were evaluated by three rapid detection systems (SS/SV(TM), VICAM, OSRT(TM), Unipath/Oxoid, and REVEAL(TM), Neogen), plus the conventional procedure. The carcasses were sampled after bleeding (P1), defeathering (P2), evisceration (P3), washing (P4), chilling (P5) and the packaged end-product (P6). In the first set of carcasses, the Salmonella incidence determined by the conventional method was 38.3% and 22.5% by SS/SV(TM). In the set for evaluation of OSRT(TM), the number of positive samples was the same detected by the cultural procedure (49.0%). In the third set, the positivity by the conventional procedure was 33.3%, and 5.0% by REVEAL(TM). The comparisons of positives in the first and third sets of carcasses were significantly different (P < 0.05). The positivity for Salmonella, in carcasses at P1 to P6, as determined by at least one of the methods, was 47.5%, 47.5%, 32.5%, 30.0%, 30.0% and 37.7%, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Internet access by wireless networks has grown considerably in recent years. However, these networks are vulnerable to security problems, especially those related to denial of service attacks. Intrusion Detection Systems(IDS)are widely used to improve network security, but comparison among the several existing approaches is not a trivial task. This paper proposes building a datasetfor evaluating IDS in wireless environments. The data were captured in a real, operating network. We conducted tests using traditional IDS and achieved great results, which showed the effectiveness of our proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"U.S. Atomic Energy Commission Contract AT(29-1)-1106."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a method for detecting and analyzing the so-called replay attacks in intrusion detection systems, when an intruder contributes a small amount of hostile actions to a recorded session of a legitimate user or process, and replays this session back to the system. The proposed approach can be applied if an automata-based model is used to describe behavior of active entities in a computer system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intrusion detection is a critical component of security information systems. The intrusion detection process attempts to detect malicious attacks by examining various data collected during processes on the protected system. This paper examines the anomaly-based intrusion detection based on sequences of system calls. The point is to construct a model that describes normal or acceptable system activity using the classification trees approach. The created database is utilized as a basis for distinguishing the intrusive activity from the legal one using string metric algorithms. The major results of the implemented simulation experiments are presented and discussed as well.