944 resultados para design for additive manufacturing
Resumo:
The research project aims to improve the Design for Additive Manufacturing of metal components. Firstly, the scenario of Additive Manufacturing is depicted, describing its role in Industry 4.0 and in particular focusing on Metal Additive Manufacturing technologies and the Automotive sector applications. Secondly, the state of the art in Design for Additive Manufacturing is described, contextualizing the methodologies, and classifying guidelines, rules, and approaches. The key phases of product design and process design to achieve lightweight functional designs and reliable processes are deepened together with the Computer-Aided Technologies to support the approaches implementation. Therefore, a general Design for Additive Manufacturing workflow based on product and process optimization has been systematically defined. From the analysis of the state of the art, the use of a holistic approach has been considered fundamental and thus the use of integrated product-process design platforms has been evaluated as a key element for its development. Indeed, a computer-based methodology exploiting integrated tools and numerical simulations to drive the product and process optimization has been proposed. A validation of CAD platform-based approaches has been performed, as well as potentials offered by integrated tools have been evaluated. Concerning product optimization, systematic approaches to integrate topology optimization in the design have been proposed and validated through product optimization of an automotive case study. Concerning process optimization, the use of process simulation techniques to prevent manufacturing flaws related to the high thermal gradients of metal processes is developed, providing case studies to validate results compared to experimental data, and application to process optimization of an automotive case study. Finally, an example of the product and process design through the proposed simulation-driven integrated approach is provided to prove the method's suitability for effective redesigns of Additive Manufacturing based high-performance metal products. The results are then outlined, and further developments are discussed.
Resumo:
The purpose of conducting this thesis is to gather around information about additive manufacturing and to design a product to be additively manufactured. The specific manufacturing method dealt with in this thesis, is powder bed fusion of metals. Therefore when mentioning additive manufacturing in this thesis, it is referred to powder bed fusion of metals. The literature review focuses on the principle of powder bed fusion, the general process chain in additive manufacturing, design rules for additive manufacturing. Examples of success stories in additive manufacturing and reasons for selecting parts to be manufactured with additive manufacturing are also explained in literature review. This knowledge is demanded to understand the experimental part of the thesis. The experimental part of the thesis is divided into two parts. Part A concentrates on finding proper geometry for building self-supporting pipes and proper parameters for support structures of them. Part B of the experimental part concentrates on a case study of designing a product for additive manufacturing. As a result of experimental part A, the design process of self-supporting pipes, results of visual analysis and results of 3D scanning are presented. As a result of experimental part B the design process of the product is presented and compared to the original model.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Da sich Additive Manufacturing (AM) von traditionellen Produktionsverfahren unterscheidet, entstehen neue Möglichkeiten im Produktdesign und im Supply Chain Setup. Die Auswirkungen der Aufhebung traditionellen Restriktionen im Produktdesign werden unter dem Begriff „Design for Additive Manufacturing“ intensiv diskutiert. In gleicher Weise werden durch AM Restriktionen im traditionellen Supply Chain Setup aufgehoben. Insbesondere sind die folgenden Verbesserungen möglich: Reduktion von Losgrössen und Lieferzeiten, bedarfsgerechte Produktion auf Abruf, dezentrale Produktion, Customization auf Ebene Bauteil und kontinuierliche Weiterentwicklung von Bauteilen. Viele Firmen investieren nicht selbst in die AM Technologien, sondern kaufen Bauteile bei Lieferanten. Um das Potential der AM Supply Chain mit Lieferanten umzusetzen, entstehen die folgenden Anforderungen an AM Einkaufsprozesse. Erstens muss der Aufwand pro Bestellung reduziert werden. Zweitens brauchen AM Nutzer einen direkten Zugang zu den Lieferanten ohne Umweg über die Einkaufsabteilung. Drittens müssen geeignete AM Lieferanten einfach identifiziert werden können. Viertens muss der Wechsel von Lieferanten mit möglichst geringem Aufwand möglich sein. Ein mögliche Lösung sind AM spezifische E-Procurement System um diese Anforderungen zu erfüllen
Resumo:
Gran cantidad de servicios de telecomunicación tales como la distribución de televisión o los sistemas de navegación están basados en comunicaciones por satélite. Del mismo modo que ocurre en otras aplicaciones espaciales, existe una serie de recursos clave severamente limitados, tales como la masa o el volumen. En este sentido, uno de los dispositivos pasivos más importantes es el diplexor del sistema de alimentación de la antena. Este dispositivo permite el uso de una única antena tanto para transmitir como para recibir, con la consiguiente optimización de recursos que eso supone. El objetivo principal de este trabajo es diseñar un diplexor que cumpla especificaciones reales de comunicaciones por satélite. El dispositivo consiste en dos estructuras filtrantes unidas por una bifurcación de tres puertas. Además, es imprescindible utilizar tecnología de guía de onda para su implementación debido a los altos niveles de potencia manejados. El diseño del diplexor se lleva a cabo dividiendo la estructura en diversas partes, con el objetivo de que todo el proceso sea factible y eficiente. En primer lugar, se han desarrollado filtros con diferentes respuestas – paso alto, paso bajo y paso banda – aunque únicamente dos de ellos formarán el diplexor. Al afrontar su diseño inicial, se lleva a cabo un proceso de síntesis teórica utilizando modelos circuitales. A continuación, los filtros se optimizan con técnicas de diseño asistido por ordenador (CAD) full-wave, en concreto mode matching. En este punto es esencial analizar las estructuras y su simetría para determinar qué modos electromagnéticos se están propagando realmente por los dispositivos, para así reducir el esfuerzo computacional asociado. Por último, se utiliza el Método de los Elementos Finitos (FEM) para verificar los resultados previamente obtenidos. Una vez que el diseño de los filtros está terminado, se calculan las dimensiones correspondientes a la bifurcación. Finalmente, el diplexor al completo se somete a un proceso de optimización para cumplir las especificaciones eléctricas requeridas. Además, este trabajo presenta un novedoso valor añadido: la implementación física y la caracterización experimental tanto del diplexor como de los filtros por separado. Esta posibilidad, impracticable hasta ahora debido a su elevado coste, se deriva del desarrollo de las técnicas de manufacturación aditiva. Los prototipos se imprimen en plástico (PLA) utilizando una impresora 3D de bajo coste y posteriormente se metalizan. El uso de esta tecnología conlleva dos limitaciones: la precisión de las dimensiones geométricas (±0.2 mm) y la conductividad de la pintura metálica que recubre las paredes internas de las guías de onda. En este trabajo se incluye una comparación entre los valores medidos y simulados, así como un análisis de los resultados experimentales. En resumen, este trabajo presenta un proceso real de ingeniería: el problema de diseñar un dispositivo que satisfaga especificaciones reales, las limitaciones causadas por el proceso de fabricación, la posterior caracterización experimental y la obtención de conclusiones.
Resumo:
L’importanza delle api per la vita sulla Terra ed il rischio alle quali sono sottoposte per via dell’azione dell’uomo sono ormai un dato di fatto. La concezione antropocentrica della natura e l’allevamento al solo fine produttivo di questi piccoli insetti, ha da sempre danneggiato il loro habitat e interferito con i loro cicli biologici. L’apicoltura, nata come un rapporto mutualistico in cui l’uomo offriva un rifugio alle api e loro in cambio provvedevano al suo nutrimento, si è trasformato in una dannosa dipendenza ed in un assoggettamento di questi insetti ai ritmi artificiali e tutt’altro che naturali della produzione rapida e seriale volta all’ottenimento di un profitto. Un’evidente prova di questa condizione, sono i rifugi per le api, le arnie. Ci siamo mai chiesti perché le arnie hanno questa forma? È quella che preferiscono le api, o quella che rende più pratici e veloci processi di costruzione, gestione e produzione? In natura le api colonizzano cavità quali tronchi cavi di alberi, forme lontane, per non dire diametralmente opposte a quelle in cui le vediamo vivere negli allevamenti. In questa ottica, il design e le nuove tecnologie, poste al servizio della Natura, conducono ad un punto di incontro tra le esigenze umane e quelle degli altri esseri viventi, delle api in questo caso. I concetti di Additive Manufacturing e Design Computazionale, permettono processi di produzione simili a quelli evolutivi naturali e trovano per questa motivazione un’applicazione ideale per progetti che si pongono come fine quello di discostarsi da una visione troppo artificiale, per riavvicinarsi alla perfezione e all’armonia delle leggi della Natura.
Resumo:
When it comes to designing a structure, architects and engineers want to join forces in order to create and build the most beautiful and efficient building. From finding new shapes and forms to optimizing the stability and the resistance, there is a constant link to be made between both professions. In architecture, there has always been a particular interest in creating new shapes and types of a structure inspired by many different fields, one of them being nature itself. In engineering, the selection of optimum has always dictated the way of thinking and designing structures. This mindset led through studies to the current best practices in construction. However, both disciplines were limited by the traditional manufacturing constraints at a certain point. Over the last decades, much progress was made from a technological point of view, allowing to go beyond today's manufacturing constraints. With the emergence of Wire-and-Arc Additive Manufacturing (WAAM) combined with Algorithmic-Aided Design (AAD), architects and engineers are offered new opportunities to merge architectural beauty and structural efficiency. Both technologies allow for exploring and building unusual and complex structural shapes in addition to a reduction of costs and environmental impacts. Through this study, the author wants to make use of previously mentioned technologies and assess their potential, first to design an aesthetically appreciated tree-like column with the idea of secondly proposing a new type of standardized and optimized sandwich cross-section to the construction industry. Parametric algorithms to model the dendriform column and the new sandwich cross-section are developed and presented in detail. A catalog draft of the latter and methods to establish it are then proposed and discussed. Finally, the buckling behavior of this latter is assessed considering standard steel and WAAM material properties.
Resumo:
Additive Manufacturing (AM), also known as “3D printing”, is a recent production technique that allows the creation of three-dimensional elements by depositing multiple layers of material. This technology is widely used in various industrial sectors, such as automotive, aerospace and aviation. With AM, it is possible to produce particularly complex elements for which traditional techniques cannot be used. These technologies are not yet widespread in the civil engineering sector, which is slowly changing thanks to the advantages of AM, such as the possibility of realizing elements without geometric restrictions, with less material usage and a higher efficiency, in particular employing Wire-and-Arc Additive Manufacturing (WAAM) technology. Buildings that benefit most from AM are all those structures designed using form-finding and free-form techniques. These include gridshells, where joints are the most critical and difficult elements to design, as the overall behaviour of the structure depends on them. It must also be considered that, during the design, the engineer must try to minimize the structure's own weight. Self-weight reductions can be achieved by Topological Optimization (TO) of the joint itself, which generates complex geometries that could not be made using traditional techniques. To sum up, weight reductions through TO combined with AM allow for several potential benefits, including economic ones. In this thesis, the roof of the British Museum is considered as a case study, analysing the gridshell structure of which a joint will be chosen to be designed and manufactured, using TO and WAAM techniques. Then, the designed joint will be studied in order to understand its structural behaviour in terms of stiffness and strength. Finally, a printing test will be performed to assess the production feasibility using WAAM technology. The computational design and fabrication stages were carried out at Technische Universität Braunschweig in Germany.
Resumo:
Although being studied only for few years, Wire and Arc Additive Manufacturing (WAAM) will become the predominant way of producing stainless-steel elements in a near-like future. The analysis and study of such elements has yet to be defined in a proper way, but the projects regarding this subject are innovating more and more thanks to the findings discovered by the latter. This thesis is focused on an initial stage on the analysis of mechanical and geometrical properties of such stainless-steel elements produced by MX3D laboratories in Amsterdam, and to perform a calibration of the design strength values by means of Annex D of Eurocode 0, which talks about the analysis of the semi-probabilistic safety factors, hence the definition of characteristic values. Moreover, after testing the stainless-steel specimens by means of strain gauges and after obtaining mechanical and geometrical properties, a statistical analysis of such properties and an evaluation of characteristic values is performed. After this, there is to execute the calibration of design strength values of WAAM inclined bars and intersections.
Resumo:
Laser additive manufacturing (LAM), known also as 3D printing, is a powder bed fusion (PBF) type of additive manufacturing (AM) technology used to manufacture metal parts layer by layer by assist of laser beam. The development of the technology from building just prototype parts to functional parts is due to design flexibility. And also possibility to manufacture tailored and optimised components in terms of performance and strength to weight ratio of final parts. The study of energy and raw material consumption in LAM is essential as it might facilitate the adoption and usage of the technique in manufacturing industries. The objective this thesis was find the impact of LAM on environmental and economic aspects and to conduct life cycle inventory of CNC machining and LAM in terms of energy and raw material consumption at production phases. Literature overview in this thesis include sustainability issues in manufacturing industries with focus on environmental and economic aspects. Also life cycle assessment and its applicability in manufacturing industry were studied. UPLCI-CO2PE! Initiative was identified as mostly applied exiting methodology to conduct LCI analysis in discrete manufacturing process like LAM. Many of the reviewed literature had focused to PBF of polymeric material and only few had considered metallic materials. The studies that had included metallic materials had only measured input and output energy or materials of the process and compared to different AM systems without comparing to any competitive process. Neither did any include effect of process variation when building metallic parts with LAM. Experimental testing were carried out to make dissimilar samples with CNC machining and LAM in this thesis. Test samples were designed to include part complexity and weight reductions. PUMA 2500Y lathe machine was used in the CNC machining whereas a modified research machine representing EOSINT M-series was used for the LAM. The raw material used for making the test pieces were stainless steel 316L bar (CNC machined parts) and stainless steel 316L powder (LAM built parts). An analysis of power, time, and the energy consumed in each of the manufacturing processes on production phase showed that LAM utilises more energy than CNC machining. The high energy consumption was as result of duration of production. Energy consumption profiles in CNC machining showed fluctuations with high and low power ranges. LAM energy usage within specific mode (standby, heating, process, sawing) remained relatively constant through the production. CNC machining was limited in terms of manufacturing freedom as it was not possible to manufacture all the designed sample by machining. And the one which was possible was aided with large amount of material removed as waste. Planning phase in LAM was shorter than in CNC machining as the latter required many preparation steps. Specific energy consumption (SEC) were estimated in LAM based on the practical results and assumed platform utilisation. The estimated platform utilisation showed SEC could reduce when more parts were placed in one build than it was in with the empirical results in this thesis (six parts).
Resumo:
The possibility of designing and manufacturing biomedical microdevices with multiple length-scale geometries can help to promote special interactions both with their environment and with surrounding biological systems. These interactions aim to enhance biocompatibility and overall performance by using biomimetic approaches. In this paper, we present a design and manufacturing procedure for obtaining multi-scale biomedical microsystems based on the combination of two additive manufacturing processes: a conventional laser writer to manufacture the overall device structure, and a direct-laser writer based on two-photon polymerization to yield finer details. The process excels for its versatility, accuracy and manufacturing speed and allows for the manufacture of microsystems and implants with overall sizes up to several millimeters and with details down to sub-micrometric structures. As an application example we have focused on manufacturing a biomedical microsystem to analyze the impact of microtextured surfaces on cell motility. This process yielded a relevant increase in precision and manufacturing speed when compared with more conventional rapid prototyping procedures.
Resumo:
This report is a review of additive and subtractive manufacturing techniques. This approach (additive manufacturing) has resided largely in the prototyping realm, where the methods of producing complex freeform solid objects directly from a computer model without part-specific tooling or knowledge. But these technologies are evolving steadily and are beginning to encompass related systems of material addition, subtraction, assembly, and insertion of components made by other processes. Furthermore, these various additive processes are starting to evolve into rapid manufacturing techniques for mass-customized products, away from narrowly defined rapid prototyping. Taking this idea far enough down the line, and several years hence, a radical restructuring of manufacturing could take place. Manufacturing itself would move from a resource base to a knowledge base and from mass production of single use products to mass customized, high value, life cycle products, majority of research and development was focused on advanced development of existing technologies by improving processing performance, materials, modelling and simulation tools, and design tools to enable the transition from prototyping to manufacturing of end use parts.
Resumo:
With applications ranging from aerospace to biomedicine, additive manufacturing (AM) has been revolutionizing the manufacturing industry. The ability of additive techniques, such as selective laser melting (SLM), to create fully functional, geometrically complex, and unique parts out of high strength materials is of great interest. Unfortunately, despite numerous advantages afforded by this technology, its widespread adoption is hindered by a lack of on-line, real time feedback control and quality assurance techniques. In this thesis, inline coherent imaging (ICI), a broadband, spatially coherent imaging technique, is used to observe the SLM process in 15 - 45 $\mu m$ 316L stainless steel. Imaging of both single and multilayer builds is performed at a rate of 200 $kHz$, with a resolution of tens of microns, and a high dynamic range rendering it impervious to blinding from the process beam. This allows imaging before, during, and after laser processing to observe changes in the morphology and stability of the melt. Galvanometer-based scanning of the imaging beam relative to the process beam during the creation of single tracks is used to gain a unique perspective of the SLM process that has been so far unobservable by other monitoring techniques. Single track processing is also used to investigate the possibility of a preliminary feedback control parameter based on the process beam power, through imaging with both coaxial and 100 $\mu m$ offset alignment with respect to the process beam. The 100 $\mu m$ offset improved imaging by increasing the number of bright A-lines (i.e. with signal greater than the 10 $dB$ noise floor) by 300\%. The overlap between adjacent tracks in a single layer is imaged to detect characteristic fault signatures. Full multilayer builds are carried out and the resultant ICI images are used to detect defects in the finished part and improve upon the initial design of the build system. Damage to the recoater blade is assessed using powder layer scans acquired during a 3D build. The ability of ICI to monitor SLM processes at such high rates with high resolution offers extraordinary potential for future advances in on-line feedback control of additive manufacturing.
Resumo:
Over the last decade, rapid development of additive manufacturing techniques has allowed the fabrication of innovative and complex designs. One field that can benefit from such technology is heat exchanger fabrication, as heat exchanger design has become more and more complex due to the demand for higher performance particularly on the air side of the heat exchanger. By employing the additive manufacturing, a heat exchanger design was successfully realized, which otherwise would have been very difficult to fabricate using conventional fabrication technologies. In this dissertation, additive manufacturing technique was implemented to fabricate an advanced design which focused on a combination of heat transfer surface and fluid distribution system. Although the application selected in this dissertation is focused on power plant dry cooling applications, the results of this study can directly and indirectly benefit other sectors as well, as the air-side is often the limiting side for in liquid or single phase cooling applications. Two heat exchanger designs were studied. One was an advanced metallic heat exchanger based on manifold-microchannel technology and the other was a polymer heat exchanger based on utilization of prime surface technology. Polymer heat exchangers offer several advantages over metals such as antifouling, anticorrosion, lightweight and often less expensive than comparable metallic heat exchangers. A numerical modeling and optimization were performed to calculate a design that yield an optimum performance. The optimization results show that significant performance enhancement is noted compared to the conventional heat exchangers like wavy fins and plain plate fins. Thereafter, both heat exchangers were scaled down and fabricated using additive manufacturing and experimentally tested. The manifold-micro channel design demonstrated that despite some fabrication inaccuracies, compared to a conventional wavy-fin surface, 15% - 50% increase in heat transfer coefficient was possible for the same pressure drop value. In addition, if the fabrication inaccuracy can be eliminated, an even larger performance enhancement is predicted. Since metal based additive manufacturing is still in the developmental stage, it is anticipated that with further refinement of the manufacturing process in future designs, the fabrication accuracy can be improved. For the polymer heat exchanger, by fabricating a very thin wall heat exchanger (150μm), the wall thermal resistance, which usually becomes the limiting side for polymer heat exchanger, was calculated to account for only up to 3% of the total thermal resistance. A comparison of air-side heat transfer coefficient of the polymer heat exchanger with some of the commercially available plain plate fin surface heat exchangers show that polymer heat exchanger performance is equal or superior to plain plate fin surfaces. This shows the promising potential for polymer heat exchangers to compete with conventional metallic heat exchangers when an additive manufacturing-enabled fabrication is utilized. Major contributions of this study are as follows: (1) For the first time demonstrated the potential of additive manufacturing in metal printing of heat exchangers that benefit from a sophisticated design to yield a performance substantially above the respective conventional systems. Such heat exchangers cannot be fabricated with the conventional fabrication techniques. (2) For the first time demonstrated the potential of additive manufacturing to produce polymer heat exchangers that by design minimize the role of thermal conductivity and deliver a thermal performance equal or better that their respective metallic heat exchangers. In addition of other advantages of polymer over metal like antifouling, anticorrosion, and lightweight. Details of the work are documented in respective chapters of this thesis.
Resumo:
I veicoli ad alte prestazioni sono soggetti ad elevati carichi per piccoli intervalli di tempo. Questo comporta diverse criticità sulle componenti che costituiscono la vettura: una di queste è la pinza freno. Al fine di renderla performante è necessario il possesso di due proprietà. In primo luogo, la pinza freno deve essere il più leggera possibile poiché essa conferisce un'inerzia nella risposta della sospensione del veicolo, procurando il distacco dello pneumatico dal suolo e causando perdita di aderenza. In secondo luogo, è necessario contenere le deformazioni della pinza freno garantendo un determinato feeling per il pilota. Il compito del progettista è ottimizzare questi due parametri che hanno effetti antitetici. Questa difficoltà porta il progettista a creare design molto complessi per raggiungere l’ottimale e non sempre le geometrie ottenute sono realizzabili con tecnologie convenzionali. Questo studio riguarda il miglioramento prestazionale di una pinza freno costruita con una lega di alluminio 7075-T6 e lavorato dal pieno. Gli obbiettivi sono quello di produrre il nuovo corpo in titanio TI6Al4V, dal momento che le temperature di esercizio portano a grandi decadute di caratteristiche meccaniche dell’alluminio, contenere il più possibile la massa a fronte dell’aumento di densità di materiale e ovviamente limitare le deformazioni. Al fine di ottenere gli obbiettivi prefissati sono utilizzati metodi agli elementi finiti in diverse fasi della progettazione: per acquisire una geometria di partenza (ottimizzazione topologica) e per la validazione delle geometrie ottenute. Le geometrie ricavate tramite l’ottimizzazione topologica devono essere ricostruite tramite software CAD affinché possano essere ingegnerizzate. Durante la modellazione è necessario valutare quale tecnologia è più vantaggiosa per produrre il componente. In questo caso studio si utilizza un processo di addizione di materiale, più specificatamente una tecnica Selective Laser Melting (SLM).