997 resultados para derived mitochondria


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article reports the nucleotide diversity within the control region of 42 mitochondrial chromosomes belonging to five South American native cattle breeds (Bos taurus). Analysis of these data in conjunction with B. taurus and B. indicus sequences from Africa, Europe, the Near East, India, and Japan allowed the recognition of eight new mitochondrial haplotypes and their relative positions in a phylogenetic network. The structure of genetic variation among different hypothetical groupings was tested through the molecular variance decomposition, which was best explained by haplotype group components. Haplotypes surveyed were classified as European-related and African-related. Unexpectedly, two haplotypes within the African cluster were more divergent from the African consensus than the latter from the European consensus. A neighbor-joining tree shows the position of two haplotypes compared to European/African mitochondrial lineage splitting. This different and putatively ancestral mitochondrial lineage (AA) is supported by the calibration of sequence divergence based on the Bos-Bison separation. The European/African mitochondria divergence might be subsequent (67,100 years before present) to that between AA and Africans (84,700 years before present), also preceding domestication times. These genetic data could reflect the haplotype distribution of Iberian cattle five centuries ago.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Morphologically,. The salivary glands of ticks are paired structures consisting of a secretory and an excretory portion, lacking a reservoir for the storage of the secretion. The secretory portion is composed in females by cells that form acini classified into the types I, II, and III. The excretory possess a major duct, from which arise several intermediate ducts that then subdivide to form the canaliculi or acinal tubules, which end at the acini from where they collect the secretion. The present Study describes the ultrastructural changes that occur in the mitochondria of cells of the acini I, II, and III in the salivary glands of partially engorged females of the Cayenne tick Amblyomma cajennense. The results show that this organelle exhibits completely disarrayed crests due to the presence of lipidic material inside the matrix and between the crests, thus demonstrating their participation in the production of the lipids that would be used structurally by the cells. These organelles with ultrastructural changes were denominated derived mitochondria. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Due to the exclusively maternal inheritance of mitochondria, mitochondrial genotypes can be coupled to a particular nuclear genotype by continuous mating of founder females and their female offspring to males of the desired nuclear genotype. However, backcrossing is a gradual procedure that, apart from being lengthy, cannot ascertain that genetic and epigenetic changes will modify the original nuclear genotype. Animal cloning by nuclear transfer using host ooplasm carrying polymorphic mitochondrial genomes allows, among other biotechnology applications, the coupling of nuclear and mitochondrial genotypes of diverse origin within a single generation. Previous attempts to use Bos taurus oocytes as hosts to transfer nuclei from unrelated species led to the development to the blastocyst stage but none supported gestation to term. Our aim in this study was to determine whether B. taurus oocytes support development of nuclei from the closely related B. indicus cattle and to examine the fate of their mitochondrial genotypes throughout development. We show that indicus:taurus reconstructed oocytes develop to the blastocyst stage and produce live offspring after transfer to surrogate cows. We also demonstrate that, in reconstructed embryos, donor cell-derived mitochondria undergo a stringent genetic drift during early development leading, in most cases, to a reduction or complete elimination of B. indicus mtDNA. These results demonstrate that cross-subspecies animal cloning is a viable approach both for matching diverse nuclear and cytoplasmic genes to create novel breeds of cattle and for rescuing closely related endangered cattle.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To examine whether mtDNA is uni- or biparentally transmitted in mice, we developed an assay that can detect sperm mtDNA in a single mouse embryo. In intraspecific hybrids of Mus musculus, paternal mtDNA was detected only through the early pronucleus stage, and its disappearance co-incided with loss of membrane potential in sperm-derived mitochondria. By contrast, in interspecific hybrids between M. musculus and Mus spretus, paternal mtDNA was detected throughout development from pronucleus stage to neonates. We propose that oocyte cytoplasm has a species-specific mechanism that recognizes and eliminates sperm mitochondria and mtDNA. This mechanism must recognize nuclearly encoded proteins in the sperm midpiece, and not the mtDNA or the proteins it encodes, because sperm mitochondria from the congenic strain B6.mtspr, which carries M. spretus mtDNA on background of M. musculus (B6) nuclear genes, were eliminated early by B6 oocytes as in intraspecific crosses. We conclude that cytoplasmic genomes are transmitted uniparentally in intraspecific crosses in mammals as in Chlamydomonas and that leakage of parental mtDNA is limited to interspecific crosses, which rarely occur in nature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Androgen-dependent prostate cancer (PrCa) xenograft models are required to study PrCa biology in the clinically relevant in vivo environment. METHODS Human PrCa tissue from a femoral bone metastasis biopsy (BM18) was grown and passaged subcutaneously through male severe combined immune-deficient (SCID) mice. Human mitochondria (hMt), prostate specific antigen (PSA), androgen receptor (AR), cytokeratin-18 (CK-18), pan-cytokeratin, and high molecular weight-cytokeratin (HMW-CK) were assessed using immunohistochemistry (IHC). Surgical castration was performed to examine androgen dependence. Serum was collected pre- and post-castration for monitoring of PSA levels. RESULTS: BM18 stained positively for hMt, PSA, AR, CK-18, pan keratin, and negatively for HMW-CK, consistent with the staining observed in the original patient material. Androgen-deprivation induced tumor regression in 10/10 castrated male SCID mice. Serum PSA levels positively correlated with BM18 tumor size. CONCLUSIONS BM18 expresses PSA and AR, and rapidly regresses in response to androgen withdrawal. This provides a new clinically significant PrCa model for the study of androgen-dependent growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Porcine circovirus type 2 (PCV2) is the essential infectious agent of post-weaning multisystemic wasting syndrome (PMWS), one of the most important diseases of swine. Although several studies have described different biological properties of the virus, some aspects of its replication cycle, including ultrastructural alterations, remain unknown. The aim of the present study was to describe for the first time a complete morphogenesis study of PCV2 in a clone of the lymphoblastoid L35 cell line at the ultrastructural level using electron microscopy techniques. Cells were infected with PCV2 at a multiplicity of infection of 10 and examined at 0, 6, 12, 24, 48, 60 and 72 h post-infection. PCV2 was internalized by endocytosis, after which the virus aggregated in intracytoplasmic inclusion bodies (ICIs). Subsequently, PCV2 was closely associated with mitochondria, completing a first cytoplasmic phase. The virus entered the nucleus for replication and virus assembly and encapsidation occurred with the participation of the nuclear membrane. Immature virions left the nucleus and formed ICIs in a second cytoplasmic phase. The results suggest that at the end of the replication cycle (between 24 and 48 h), PCV2 was released either by budding of mature virion clusters or by lysis of apoptotic or dead cells. In conclusion, the L35-derived clone represents a suitable in-vitro model for PCV2 morphogenesis studies and characterization of the PCV2 replication cycle. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Protoporphyrin (Pp IX) derivatives were prepared to study the relationship between photosensitizer structure and photoactivity, with an emphasis on understanding the role of membrane interactions in the efficiency of photosensitizers used in photodynamic therapy (PDT). The synthetic strategies described here aimed at changing protoporphyrin periferic groups, varying overall charge and oil/water partition, while maintaining their photochemical properties. Three synthetic routes were used: (1) modification of Pp IX at positions 3(1) and 8(1) by addition of alkyl amine groups of different lengths (compounds 2-5), (2) change of Pp IX at positions 13(3) and 17(3), generating alkyl amines (compounds 6 and 7), a phosphate amine (compound 8), and quarternary ammonium compounds (compounds 9 and 10), and (3) amine-alkylation of Hematoporphyrin IX (Hp IX) at positions 3(1), 8(1), 13(3) and 17(3) (compound 12). Strategy 1 leads to hydrophobic compounds with low photocytotoxicity. Strategy 2 leads to compounds 6-10 that have high levels of binding/incorporation in vesicles, mitochondria and cells, which are indicative of high bioavailability. Addition of the phosphate group (compound 8), generates an anionic compound that has low liposome and cell incorporation, plus low photocytotoxicity. Compound 12 has intermediate incorporation and photocytotoxic properties. Compound modification is also associated with changes in their sub-cellular localization: 30% of 8 (anionic) is found in mitochondria as compared to 95% of compound 10 (cationic). Photocytotoxicity was shown to be highly correlated with membrane affinity, which depends on the asymmetrical and amphiphilic characters of sens, as well as with sub-cellular localization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence suggests that in addition to being the 'power houses' of our cells, mitochondria facilitate effector responses of the immune system. Cell death and injury result in the release of mtDNA (mitochondrial DNA) that acts via TLR9 (Toll-like receptor 9), a pattern recognition receptor of the immune system which detects bacterial and viral DNA but not vertebrate DNA. The ability of mtDNA to activate TLR9 in a similar fashion to bacterial DNA stems from evolutionarily conserved similarities between bacteria and mitochondria. mtDNA may be the trigger of systemic inflammation in pathologies associated with abnormal cell death. PE (pre-eclampsia) is a hypertensive disorder of pregnancy with devastating maternal and fetal consequences. The aetiology of PE is unknown and removal of the placenta is the only effective cure. Placentas from women with PE show exaggerated necrosis of trophoblast cells, and circulating levels of mtDNA are higher in pregnancies with PE. Accordingly, we propose the hypothesis that exaggerated necrosis of trophoblast cells results in the release of mtDNA, which stimulates TLR9 to mount an immune response and to produce systemic maternal inflammation and vascular dysfunction that lead to hypertension and IUGR (intra-uterine growth restriction). The proposed hypothesis implicates mtDNA in the development of PE via activation of the immune system and may have important preventative and therapeutic implications, because circulating mtDNA may be potential markers of early detection of PE, and anti-TLR9 treatments may be promising in the management of the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As the major anionic phospholipids predominantly found in the mitochondrial inner membrane of eukaryotic cells, cardiolipin (CL) and its precursor phosphatidylglycerol (PG) are of great importance in many critical mitochondrial processes. Pgs1Δ cells of Saccharomyces cerevisiae lacking both PG and CL display severe mitochondrial defects. Translation of several proteins including products of four mitochondrial DNA (mtDNA) encoded genes (COX1, COX2, COX3, and COB ) and one nuclear-encoded gene (COX4) is inhibited. The molecular basis of this phenotype was analyzed using a combined biochemical, molecular and genetic approach. ^ Using a mitochondrial targeted green fluorescence protein (mtGFP) fused to the COX4 promoter and its 5′ and 3′ untranslated regions (UTRs), lack of mtGFP expression independent of carbon source and strain background was confirmed to be at the translational level. The translational defect was not due to deficiency of mitochondrial respiratory function but rather caused directly by the lack of PG/CL in the mitochondrial membrane. Re-introduction of a functional PGS1 gene restored PG synthesis and expression of the above mtGFP. Deletional analysis of the 5′ UTR of COX4 mRNA revealed the presence of a 50 nt sequence as a cis-acting element inhibiting COX4 translation. Using similar constructs with HIS3 and lacZ as reporter genes, extragenic spontaneous mutations that allowed expression of His3p and β-galactosidase were isolated, which appeared to be recessive and derived from loss-of-function mutations as determined by mating analysis. Using a tetracycline repressible plasmid-borne PGS1 expression system and an in vivo mitochondrial protein translation method, the translation of mtDNA encoded COX1 and COX3 mRNAs was shown to be significantly inhibited in parallel with reduced levels of PG/CL content. Therefore, the cytoplasmic translation machinery appears to be able to sense the level of PG/CL in mitochondria and regulate COX4 translation coordinately with the mtDNA encoded subunits. ^ The essential requirement of PG and CL in mitochondrial function was further demonstrated in the study of CL synthesis by factors affecting mitochondrial biogenesis such as carbon source, growth phase or mitochondrial mutations at the level of transcription. We have also demonstrated that CL synthesis is dependent on the level of PG and INO2/INO4 regulatory genes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cytochrome c release and the mitochondrial permeability transition (PT), including loss of the transmembrane potential (Δψ), play an important role in apoptosis. Using isolated mitochondria, we found that recombinant Bax and Bak, proapoptotic members of the Bcl-2 family, induced mitochondrial Δψ loss, swelling, and cytochrome c release. All of these changes were dependent on Ca2+ and were prevented by cyclosporin A (CsA) and bongkrekic acid, both of which close the PT pores (megachannels), indicating that Bax- and Bak-induced mitochondrial changes were mediated through the opening of these pores. Bax-induced mitochondrial changes were inhibited by recombinant Bcl-xL and transgene-derived Bcl-2, antiapoptotic members of the Bcl-2 family, as well as by oligomycin, suggesting a possible regulatory effect of F0F1-ATPase on Bax-induced mitochondrial changes. Proapoptotic Bax- and Bak-BH3 (Bcl-2 homology) peptides, but not a mutant BH3 peptide nor a mutant Bak lacking BH3, induced the mitochondrial changes, indicating an essential role of the BH3 region. A coimmunoprecipitation study revealed that Bax and Bak interacted with the voltage-dependent anion channel, which is a component of PT pores. Taken together, these findings suggest that proapoptotic Bcl-2 family proteins, including Bax and Bak, induce the mitochondrial PT and cytochrome c release by interacting with the PT pores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mammalian mitochondrial ribosomes contain two prokaryotic-like rRNAs, 12S and 16S, both encoded by mitochondrial DNA. As opposed to cytosolic ribosomes, however, these ribosomes are not thought to contain 5S rRNA. For this reason, it has been unclear whether 5S rRNA, which can be detected in mitochondrial preparations, is an authentic organellar species imported from the cytosol or is merely a copurifying cytosol-derived contaminant. We now show that 5S rRNA is tightly associated with highly purified mitochondrial fractions of human and rat cells and that 5S rRNA transcripts derived from a synthetic gene transfected transiently into human cells are both expressed in vivo and present in highly purified mitochondria and mitoplasts. We conclude that 5S rRNA is imported into mammalian mitochondria, but its function there still remains to be clarified.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The term "mitokines" refers to signals derived from mitochondria that have an impact on other cells or tissues (Durieux et al., 2011). Rather than being simply a set of DNA composed by 37 genes, the mitochondrial DNA (mtDNA) is quite complex and includes small RNAs (Mercer et al., 2011). Mitochondrial-derived peptides (MDPs) are encoded by functional short open reading frames (sORFs) in the mtDNA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific mechanisms by which selective pressures affect individuals are often difficult to resolve. In tephritid fruit flies, males respond strongly and positively to certain plant derived chemicals. Sexual selection by female choice has been hypothesized as the mechanism driving this behaviour in certain species, as females preferentially mate with males that have fed on these chemicals. This hypothesis is, to date, based on studies of only very few species and its generality is largely untested. We tested the hypothesis on different spatial scales (small cage and seminatural field-cage) using the monophagous fruit fly, Bactrocera cacuminata. This species is known to respond to methyl eugenol (ME), a chemical found in many plant species and one upon which previous studies have focused. Contrary to expectation, no obvious female choice was apparent in selecting ME-fed males over unfed males as measured by the number of matings achieved over time, copulation duration, or time of copulation initiation. However, the number of matings achieved by ME-fed males was significantly greater than unfed males 16 and 32 days after exposure to ME in small cages (but not in a field-cage). This delayed advantage suggests that ME may not influence the pheromone system of B. cacuminata but may have other consequences, acting on some other fitness consequence (e.g., enhancement of physiology or survival) of male exposure to these chemicals. We discuss the ecological and evolutionary implications of our findings to explore alternate hypotheses to explain the patterns of response of dacine fruit flies to specific plant-derived chemicals.