957 resultados para derivative approximation
Resumo:
The results of a numerical investigation into the errors for least squares estimates of function gradients are presented. The underlying algorithm is obtained by constructing a least squares problem using a truncated Taylor expansion. An error bound associated with this method contains in its numerator terms related to the Taylor series remainder, while its denominator contains the smallest singular value of the least squares matrix. Perhaps for this reason the error bounds are often found to be pessimistic by several orders of magnitude. The circumstance under which these poor estimates arise is elucidated and an empirical correction of the theoretical error bounds is conjectured and investigated numerically. This is followed by an indication of how the conjecture is supported by a rigorous argument.
Resumo:
Sequential Monte Carlo methods, also known as particle methods, are a widely used set of computational tools for inference in non-linear non-Gaussian state-space models. In many applications it may be necessary to compute the sensitivity, or derivative, of the optimal filter with respect to the static parameters of the state-space model; for instance, in order to obtain maximum likelihood model parameters of interest, or to compute the optimal controller in an optimal control problem. In Poyiadjis et al. [2011] an original particle algorithm to compute the filter derivative was proposed and it was shown using numerical examples that the particle estimate was numerically stable in the sense that it did not deteriorate over time. In this paper we substantiate this claim with a detailed theoretical study. Lp bounds and a central limit theorem for this particle approximation of the filter derivative are presented. It is further shown that under mixing conditions these Lp bounds and the asymptotic variance characterized by the central limit theorem are uniformly bounded with respect to the time index. We demon- strate the performance predicted by theory with several numerical examples. We also use the particle approximation of the filter derivative to perform online maximum likelihood parameter estimation for a stochastic volatility model.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.
Resumo:
In this paper, we consider a time fractional diffusion equation on a finite domain. The equation is obtained from the standard diffusion equation by replacing the first-order time derivative by a fractional derivative (of order $0<\alpha<1$ ). We propose a computationally effective implicit difference approximation to solve the time fractional diffusion equation. Stability and convergence of the method are discussed. We prove that the implicit difference approximation (IDA) is unconditionally stable, and the IDA is convergent with $O(\tau+h^2)$, where $\tau$ and $h$ are time and space steps, respectively. Some numerical examples are presented to show the application of the present technique.
Resumo:
In this paper, we consider the variable-order nonlinear fractional diffusion equation View the MathML source where xRα(x,t) is a generalized Riesz fractional derivative of variable order View the MathML source and the nonlinear reaction term f(u,x,t) satisfies the Lipschitz condition |f(u1,x,t)-f(u2,x,t)|less-than-or-equals, slantL|u1-u2|. A new explicit finite-difference approximation is introduced. The convergence and stability of this approximation are proved. Finally, some numerical examples are provided to show that this method is computationally efficient. The proposed method and techniques are applicable to other variable-order nonlinear fractional differential equations.
Resumo:
The cable equation is one of the most fundamental equations for modeling neuronal dynamics. Cable equations with a fractional order temporal derivative have been introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, the fractional cable equation involving two integro-differential operators is considered. The Galerkin finite element approximations of the fractional cable equation are proposed. The main contribution of this work is outlined as follow: • A semi-discrete finite difference approximation in time is proposed. We prove that the scheme is unconditionally stable, and the numerical solution converges to the exact solution with order O(Δt). • A semi-discrete difference scheme for improving the order of convergence for solving the fractional cable equation is proposed, and the numerical solution converges to the exact solution with order O((Δt)2). • Based on the above semi-discrete difference approximations, Galerkin finite element approximations in space for a full discretization are also investigated. • Finally, some numerical results are given to demonstrate the theoretical analysis.
Resumo:
In this paper, the spectral approximations are used to compute the fractional integral and the Caputo derivative. The effective recursive formulae based on the Legendre, Chebyshev and Jacobi polynomials are developed to approximate the fractional integral. And the succinct scheme for approximating the Caputo derivative is also derived. The collocation method is proposed to solve the fractional initial value problems and boundary value problems. Numerical examples are also provided to illustrate the effectiveness of the derived methods.
Resumo:
Fractional reaction–subdiffusion equations are widely used in recent years to simulate physical phenomena. In this paper, we consider a variable-order nonlinear reaction–subdiffusion equation. A numerical approximation method is proposed to solve the equation. Its convergence and stability are analyzed by Fourier analysis. By means of the technique for improving temporal accuracy, we also propose an improved numerical approximation. Finally, the effectiveness of the theoretical results is demonstrated by numerical examples.
Resumo:
This paper develops analytical distributions of temperature indices on which temperature derivatives are written. If the deviations of daily temperatures from their expected values are modelled as an Ornstein-Uhlenbeck process with timevarying variance, then the distributions of the temperature index on which the derivative is written is the sum of truncated, correlated Gaussian deviates. The key result of this paper is to provide an analytical approximation to the distribution of this sum, thus allowing the accurate computation of payoffs without the need for any simulation. A data set comprising average daily temperature spanning over a hundred years for four Australian cities is used to demonstrate the efficacy of this approach for estimating the payoffs to temperature derivatives. It is demonstrated that expected payoffs computed directly from historical records are a particularly poor approach to the problem when there are trends in underlying average daily temperature. It is shown that the proposed analytical approach is superior to historical pricing.
Resumo:
We consider numerical solutions of nonlinear multiterm fractional integrodifferential equations, where the order of the highest derivative is fractional and positive but is otherwise arbitrary. Here, we extend and unify our previous work, where a Galerkin method was developed for efficiently approximating fractional order operators and where elements of the present differential algebraic equation (DAE) formulation were introduced. The DAE system developed here for arbitrary orders of the fractional derivative includes an added block of equations for each fractional order operator, as well as forcing terms arising from nonzero initial conditions. We motivate and explain the structure of the DAE in detail. We explain how nonzero initial conditions should be incorporated within the approximation. We point out that our approach approximates the system and not a specific solution. Consequently, some questions not easily accessible to solvers of initial value problems, such as stability analyses, can be tackled using our approach. Numerical examples show excellent accuracy. DOI: 10.1115/1.4002516]
Resumo:
Based on the rigorous formulation of integral equations for the propagations of light waves at the medium interface, we carry out the numerical solutions of the random light field scattered from self-affine fractal surface samples. The light intensities produced by the same surface samples are also calculated in Kirchhoff's approximation, and their comparisons with the corresponding rigorous results show directly the degree of the accuracy of the approximation. It is indicated that Kirchhoff's approximation is of good accuracy for random surfaces with small roughness value w and large roughness exponent alpha. For random surfaces with larger w and smaller alpha, the approximation results in considerable errors, and detailed calculations show that the inaccuracy comes from the simplification that the transmitted light field is proportional to the incident field and from the neglect of light field derivative at the interface.
Resumo:
Photocurrent (PC) spectra of ZnCdSe-ZnSe double multi-quantum wells are measured at different temperature. Its corresponding photocurrent derivative (PCD) spectra are obtained by computing, and the PCD spectra have greatly enhanced the sensitivity of the relative weak PC signals. The polarization dependence of the PC spectra shows that the transitions observed in the PC spectra are heavy-hole related, and the transition energy coincide well with the results obtained by envelope function approximation including strain. The temperature dependence of the photocurrent curves indicates that the thermal activation is the dominant transport mechanism of the carriers in our samples. The concept of saturation temperature region is introduced to explain why the PC spectra have different temperature dependence in the samples with different structure parameters. It is found to be very useful in designing photovoltaic devices.