798 resultados para depolarization current


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to have a better understanding of the role of the structure and the defects involved in the polarization processes in an 85TeO(2)-15Na(2)O mol% glass, we used the thermally stimulated depolarization currents (TSDC technique). The TSDC of the non-irradiated sample presented a strong negative peak of current at the temperature of 340 K, preceded by a relatively weak positive peak at about 300 K. after different d.c. voltages of 1200, 1500 and 2000 V were applied. No response was obtained with 1000 V. but the peak intensity increased considerably for voltages above 1200 V. After gamma-irradiation of 25 and 50 KGy doses, a depolarization of the negative peak was observed in the sample submitted to 25 KGy, whereas for the sample irradiated with 50 KGy, six TSDC peaks appeared at regular intervals of 5 KGy, in the temperature range of 100 and 300 K. Crown Copyright (C) 2010 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monochromatic light excitation in conjunction with thermally stimulated depolarization current measurements are applied to indirect bandgap AlxGa1-xAs. The obtained average activation energy for dipole relaxation is in very close agreement with the DX center binding energy. Monochromatic light induces state transition in the defect and makes possible the identification of dipoles observed in the dark. Charge relaxation currents are destroyed by photoionization of Al0.5Ga0.5As using either 647 nm Kr+ or 488 nm Ar+ laser lines, which are above the DX center threshold photoionization energy. It suggests that correlation may exist among charged donor states DX--d+. Sample resistance as a function of temperature is also measured in the dark and under illumination and shows the probable X valley effective mass state participation in the electron trapping. Ionization with energies of 0.8 eV and 1.24 eV leads to striking current peak shifts in the thermally stimulated depolarization bands. Since vacancies are present in this material, they may be responsible for the secondary band observed in the dark as well as participation in the light induced recombination process.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report for the first time the thermally stimulated depolarization current (TSDC) spectrum for a direct band-gap AlGaAs sample, where the presence of DX centers is clearly observed by photoconductivity measurements. A TSDC band is obtained, revealing the presence of dipoles, which could be attributed to DX--d+ pairs as indeed predicted by O'Reilly [Appl. Phys. Lett. 55, 1409 (1989)]. The data are fitted by relaxation time distribution approach yielding an average activation energy of 0.108 eV. This is the most striking feature of our data, since this energy has approximately the same value of the DX center binding energy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The thermally stimulated depolarization current (TSDC) in a range of temperature from 84 to 373 K, has been applied to study the depolarization current of polyethylene and polyethylene composites in form of film and filled with commercial or oxidative surface treatment carbon black. The diagrams of TSDC obtained show that the composite in which the carbon black had received oxidative surface treatment reducing on an average depolarization current intensity in a magnitude order if compared to the composite with commercial carbon black. Therefore in the area between α and β transitions the difference is accentuated by reaching a peak 55 times in a temperature of 240 K. The difference in results is explained in terms of molecular interactions neighboring of carbon black particles.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Impurity-interstitial dipoles in calcium fluoride solutions with Al3+, Yb3+ and La3+ fluorides were studied using the thermally stimulated depolarization current (TSDC) technique. The dipolar complexes are formed by substitutional trivalent ions in Ca2+ sites and interstitial fluorine in nearest neighbor sites. The relaxations observed at 150 K are assigned to dipoles nnR(S)(3+)- F-i(-) (R-S = La or Yb). The purpose of this work is to study the processes of energy storage in the fluorides following X-ray and gamma irradiation. Computer modelling techniques are used to obtain the formation energy of dipole defects. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular mobility in castor oil based polyurethane was investigated with thermally stimulated depolarization current (TSDC) measurements and alternating-current (ac) dielectric relaxation spectroscopy. Three peaks could be observed in TSDC thermograms from 173 to 373 K. The relaxation located at 213 K could be attributed to the change in the molecular chain due to the interaction between the isocyanate and the solvent, and it was well fitted with the Vogel-Fulcher-Tammann equation. The other two peaks were located at 274 and 365 K and could be attributed to interfacial polarization and space charge, respectively. (c) 2005 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thin films of blend made up of castor oil-based polyurethane (PU) and polyaniline (PANI) were obtained by casting. The molecular mobility was studied using dielectric spectroscopy and thermally stimulated depolarization current (TSDC) for blends with two different compositions (90/10, 80/20) and the results were compared with PU pure. The peak located around -60 degrees C in TSDC thermograms of PU/PANI blend has dipolar behavior and might be attributed to the change in the molecular chain due to the interaction between isocyanate and the solvent. Vogel-Fulcher Tammann fits was performed on the observed relaxation and the result shows a alpha-relaxation-like. (c) 2005 Springer Science + Business Media, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electrical properties of natural alexandrite (BeAl2O4:Cr3+) are investigated by the thermally stimulated depolarization current (TSDC) technique. Samples are submitted to consecutive annealing processes and TSDC is carried out after each annealing, yielding bands with different parameters. These bands are fitted by a continuous distribution of relaxation parameters: activation energy and pre-exponential factor of the Arrhenius equation. It has been observed that annealing influences the dipole relaxation behavior, since it promotes a modification of Fe3+ and C3+ impurity distributions on sites of distinct symmetry: Al-1 and Al-2. In order to have a reference for comparison, TSDC is also carried out on a synthetic alexandrite sample, where the only impurity present is Cr3+ ion.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present results of thermally stimulated depolarization current (TSDC) measurements in synthetic and natural alexandrite, which show TSDC bands related to the presence of electric dipoles in both types of samples. Synthetic material shows a wide TSDC band with a peak at 179 K, which can be fitted by two distinct relaxing dipole distributions. For natural alexandrite the TSDC band has a maximum around 195 K and can be fitted by three different distributions. Both samples present one of the calculated curves with a peak about 179 K, with activation energy of 0.57 eV and constant relaxation time of 1 × 10-14 sec. Photo-induced TSDC shows that TSDC bands can also be generated by simultaneous application of light and an electric field at 77 K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Monitoring non-ionizing radiant energy is increasingly demanded for many applications such as automobile, biomedical and security system. Thermal type infrared (IR) sensors can operate at room temperature and pyroelectric materials have high sensitivity and accuracy for that application. Working as thermal transducer pyroelectric sensor converts the non-quantified thermal flux into the output measurable quantity of electrical charge, voltage or current. In the present study the composite made of poly(vinylidene fluoride) -PVDF and lead zirconate titanate (PZT) partially recovered with polyaniline (PAni) conductor polymer has been used as sensor element. The pyroelectric coefficient p(T) was obtained by measuring the pyroelectric reversible current, i.e., measuring the thermally stimulated depolarization current (TSDC) after removing all irreversible contribution to the current such as injected charge during polarization of the sample. To analyze the sensing property of the pyroelectric material, the sensor is irradiated by a high power light source (halogen lamp of 250 W) that is chopped providing a modulated radiation. A device assembled in the laboratory is used to change the light intensity sensor, an aluminum strip having openings with diameters ranging from 1 to 10 mm incremented by one millimeter. The sensor element is assembled between two electrodes while its frontal surface is painted black ink to maximize the light absorption. The signal from the sensor is measured by a Lock-In amplifier model SR530 -Stanford Research Systems. The behavior of the output voltage for an input power at several frequencies for PZT-PAni/PVDF (30/ 70 vol%) composite follows the inverse power law (1/ f) and the linearity can be observed in the frequency range used.