955 resultados para dentin depth
Resumo:
The study evaluated the in vitro influence of pulse-repetition rate of Er:YAG laser and dentin depth on tensile bond strength of dentin-resin interface. Dentin surfaces of buccal or lingual surfaces from human third molars were submitted to tensile test in different depths (superficial, 1.0 and 1.5 mm) of the same dental area, using the same sample. Surface treatments were acid conditioning solely (control) and Er:YAG laser irradiation (80 mJ) followed by acid conditioning, with different pulse-repetition rates (1, 2, 3, or 4 Hz). Single bond/Z-250 system was used. The samples were stored in distilled water at 37 degrees C for 24 h, and then the first test (superficial dentine) was performed. The bond failures were analyzed. Following, the specimens were identified, grounded until 1.0- and 1.5-mm depths, submitted again to the treatments and to the second and, after that, to third-bond tests on a similar procedure and failure analysis. ANOVA and Tukey test demonstrated a significant difference (p < 0.001) for treatment and treatment X depth interaction (p < 0.05). The tested depths did not show influence (p > 0.05) on the bond strength of dentin-resin interface. It may be concluded that Er:YAG laser with 1, 2, 3, or 4 Hz combined with acid conditioning did not increase the resin tensile bond strength to dentin, regardless of dentin depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
The purpose of this study was to evaluate the influence of intrapulpal pressure and dentin depth on bond strengths of an etch-and-rinse and a self-etching bonding agent to dentin in vitro and in vivo. Twenty-four pairs of premolars were randomly divided into four groups (n = 6) according to the dentin bonding agent, Single Bond and Clearfil SE Bond, and intrapulpal pressure, null or positive. Each tooth of the pair was further designated to be treated in vivo or in vitro. The intrapulpal pressure was controlled in vivo by the delivery of local anesthetics containing or not a vasoconstrictor, while in vitro, it was achieved by keeping the teeth under hydrostatic pressure. Class I cavities were prepared and the dentin bonding agents were applied followed by incremental resin restoration. For the teeth treated in vitro, the same restorative procedures were performed after a 6 month-storage period. Beams with I mm 2 cross-sectional area were prepared and, microtensile tested. Clearfil SE Bond was not influenced by any of the variables of the study, while bond strengths produced in vitro were significatly higher for Single Bond. Overall, lower bond strengths were produced in deep dentin, which reached statistical significance when Single Bond was applied under physiological or simulated intrapulpal pressure. In conclusion, in vitro bonding may overestimate the immediate adhesive performance of more technique-sensitive dentin bonding systems. The impact of intrapulpal pressure on bond strength seems to be more adhesive dependent than dentin morphological characteristics related to depth. (C) 2007 Wiley Periodicals, Inc.
Resumo:
Objectives: The aim of this study was to analyze the stress distribution on dentin/adhesive interface (d/a) through a 3-D finite element analysis (FEA) varying the number and diameter of the dentin tubules orifice according to dentin depth, keeping hybrid layer (HL) thickness and TAǴs length constant. Materials and Methods: 3 models were built through the SolidWorks software: SD - specimen simulating superficial dentin (41 x 41 x 82 μm), with a 3 μm thick HL, a 17 μm length Tag, and 8 tubules with a 0.9 μm diameter restored with composite resin. MD - similar to M1 with 12 tubules with a 1.2 μm diameter, simulating medium dentin. DD - similar to M1 with 16 tubules with a 2.5 μm diameter, simulating deep dentin. Other two models were built in order to keep the diameter constant in 2.5 μm: MS - similar to SD with 8 tubules; and MM - similar to MD with 12 tubules. The boundary condition was applied to the base surface of each specimen. Tensile load (0.03N) was performed on the composite resin top surface. Stress field (maximum principal stress in tension - σMAX) was performed using Ansys Wokbench 10.0. Results: The peak of σMAX (MPa) were similar between SD (110) and MD (106), and higher for DD (134). The stress distribution pathway was similar for all models, starting from peritubular dentin to adhesive layer, intertubular dentin and hybrid layer. The peak of σMAX (MPa) for those structures was, respectively: 134 (DD), 56.9 (SD), 45.5 (DD), and 36.7 (MD). Conclusions: The number of dentin tubules had no influence in the σMAX at the dentin/adhesive interface. Peritubular and intertubular dentin showed higher stress with the bigger dentin tubules orifice condition. The σMAX in the hybrid layer and adhesive layer were going down from superficial dentin to deeper dentin. In a failure scenario, the hybrid layer in contact with peritubular dentin and adhesive layer is the first region for breaking the adhesion. © 2011 Nova Science Publishers, Inc.
Resumo:
The purpose of this study was to evaluate the dentin shear bond strength of four adhesive systems (Adper Single Bond 2, Adper Prompt L-Pop, Magic Bond DE and Self Etch Bond) in regards to buccal and lingual surfaces and dentin depth. Forty extracted third molars had roots removed and crowns bisected in the mesiodistal direction. The buccal and lingual surfaces were fixed in a PVC/acrylic resin ring and were divided into buccal and lingual groups assigned to each selected adhesive. The same specimens prepared for the evaluation of superficial dentin shear resistance were used to evaluate the different depths of dentin. The specimens were identified and abraded at depths of 0.5, 1.0, 1.5 and 2.0 mm. Each depth was evaluated by ISO TR 11405 using an EMIC-2000 machine regulated at 0.5 mm/min with a 200 Kgf load cell. We performed statistical analyses on the results (ANOVA, Tukey and Scheffé tests). Data revealed statistical differences (p < 0.01) in the adhesive and depth variation as well as adhesive/depth interactions. The Adper Single Bond 2 demonstrated the highest mean values of shear bond strength. The Prompt L-Pop product, a self-etching adhesive, revealed higher mean values compared with Magic Bond DE and Self Etch Bond adhesives, a total and self-etching adhesive respectively. It may be concluded that the shear bond strength of dentin is dependent on material (adhesive system), substrate depth and adhesive/depth interaction.
Resumo:
Objective: In this study we evaluated the ablation rate of superficial and deep dentin irradiated with different Er:YAG laser energy levels, and observed the micromorphological aspects of the lased substrates with a scanning electron microscope (SEM). Background Data: Little is known about the effect of Er: YAG laser irradiation on different dentin depths. Materials and Methods: Sixty molar crowns were bisected, providing 120 specimens, which were randomly assigned into two groups ( superficial or deep dentin), and later into five subgroups (160, 200, 260, 300, or 360 mJ). Initial masses of the specimens were obtained. After laser irradiation, the final masses were obtained and mass losses were calculated followed by the preparation of specimens for SEM examination. Mass-loss values were subjected to two-way ANOVA and Fisher's least significant difference multiple-comparison tests (p < 0.05). Results: There was no difference between superficial and deep dentin. A significant and gradual increase in the mass-loss values was reached when energies were raised, regardless of the dentin depth. The energy level of 360 mJ showed the highest values and was statistically significantly different from the other energy levels. The SEM images showed that deep dentin was more selectively ablated, especially intertubular dentin, promoting tubule protrusion. At 360 mJ the micromorphological features were similar for both dentin depths. Conclusion: The ablation rate did not depend on the depth of the dentin, and an energy level lower than 360 mJ is recommended to ablate both superficial and deep dentin effectively without causing tissue damage.
Resumo:
This study evaluated the effect of the C-factor and dentin preparation method (DPM) in the bond strength (BS) of a mild self-etch adhesive; the study also observed the SEM superficial aspects of the corresponding smear layer. For purposes of this study, 25 molars (n=5) were used in a bond strength test. The molars were divided into two parts (buccal and lingual): one part received a Class V cavity (C-factor=3) and the other received a flat surface (C-factor=0) with the same bur type (coarse diamond or carbide bur and fine diamond or carbide bur), both within the same dentin depth. Five teeth were prepared with wet 60-grit and 600-grit SiC papers. After restoration with Clearfil SE Bond, microtensile beans (0.8 mm(2)) were prepared and tested after 24 hours in a universal testing machine (0.5 mm/minute). An additional two teeth for each DPM were prepared for SEM evaluation of the smear layer superficial aspects. The BS values were submitted to one-way ANOVA, considering only the DPM (flat surfaces) and two-way ANOVA (C-Factor x DPM, considering only burs) with p=0.05. Although the DPM in the flat surfaces was not significant, the standard deviations of carbide bur-prepared specimens were markedly lower. The BS was significantly lower in cavities. The fine carbide bur presented the most favorable smear layer aspect. It was concluded that different dentin preparation methods could not prevent the adverse effect in bond strength of a high C-factor. A coarse cut carbide bur should be avoided prior to a mild self-etch adhesive, because it adversely affected bond strength. In contrast, a fine cut carbide bur provided the best combination: high bond strength with low variability, which suggests a more reliable bond strength performance.
Resumo:
O objetivo do presente estudo foi investigar a influência da pressão intrapulpar e da profundidade dentinária sobre o desempenho adesivo de dois agentes de união à dentina, Single Bond (3M ESPE, St. Paul, MN, EUA) e Clearfil SE Bond (Kuraray, Tokyo, Japão), aplicados in vitro e in vivo. Quarenta e oito prémolares superiores hígidos foram selecionados e os pares pertencentes aos mesmos pacientes foram aleatoriamente distribuídos em 4 grupos experimentais de acordo com o sistema adesivo e a pressão intrapulpar, presente ou ausente. Dos dentes pertencentes ao mesmo par, um foi tratado in vivo e o outro in vitro. A ausência ou presença de pressão intra-pulpar foi determinada in vivo pelo uso de anestésicos locais com ou sem vasoconstritor, respectivamente. In vitro, os dentes foram mantidos sob pressão hidrostática de 15 cm de água por 24 horas. Cavidades de classe I foram preparadas e os sistemas adesivos aplicados de acordo com a recomendação dos fabricantes, seguidos da restauração incremental em resina composta. Para os dentes tratados in vitro, os mesmos procedimentos restauradores foram realizados após 6 meses de armazenagem em solução contendo timol 0,1%. Espécimes com área de secção transversal de 1 mm2 foram obtidos e submetidos ao ensaio mecânico de microtração. In vivo, ambos os sistemas adesivos apresentaram desempenho adesivo comparável, enquanto in vitro, o sistema Single Bond foi superior ao sistema Clearfil SE Bond. Esse último não foi influenciado por nenhuma das variáveis estabelecidas no estudo, ou seja, aplicação in vitro ou in vitro, presença de pressão intrapulpar e profundidade em dentina. O sistema Single Bond aplicado sob pressão intrapulpar positiva sofreu variação significante de resistência de união em função da profundidade da dentina, ou seja, em dentina profunda seu desempenho adesivo... (Resumo completo, clicar acesso eletrônico abaixo)
Resumo:
Objective. The objective of this study was to evaluate the disinfection degree of dentine caused by the use of diode laser after biomechanical procedures. Study design. Thirty teeth were sectioned and roots were autoclaved and incubated for 4 weeks with a suspension of Enterococcus faecalis. The specimens were randomly divided into 3 groups (n = 10): G1, instrumented with rotary files, irrigated with 0.5% sodium hypochlorite and 17% EDTA-T, and then irradiated by 830-nm diode laser at 3 W; G2, the same procedures as G1 but without laser irradiation; and G3, irrigation with saline solution (control). Dentin samples of each third were collected with carbide burs and aliquots were sowed to count viable cells. Results. The disinfection degree achieved was 100% in G1 and 98.39% in G2, when compared to the control group (G3). Conclusion. Diode laser irradiation provided increased disinfection of the deep radicular dentin in the parameters and samples tested.
Resumo:
This study evaluated the influence of adhesive layer thickness (ADL) on the resin-dentin bond strength of two adhesive systems (AS) after ther-mal and mechanical loading (TML). A flat superficial dentin surface was exposed with 600-grit SiC paper on 40 molars. After primer application, the adhesive layer of Scotchbond Multipurpose (SBMP) or Clearfil SE Bond (CSEB) was applied in one or two layers to a delimited area (52 mm(2)) and resin blocks (Filtek 2250) were built incrementally: Half of the sample was stored in distilled water (37 C, 24 hours) and submitted to thermal (1,000; 5 degrees-55 degrees C) and mechanical cycles (500,000; 10kgf) [TML]. The other half was stored in distilled water (72 hours). The teeth were then sectioned to obtain sticks (0.8 mm(2)) to be tested under tensile mode (1.0 mm/minute). The fracture mode was analyzed at 400x. The BS from all sticks from the same tooth was averaged for statistical purposes. The data was analyzed by three-way ANOVA. The x(2) test was used (p<0.05) to compare the frequency of pre-testing failure specimens. Higher BS values were observed for SBMP regardless of the ADL. The TML reduced the BS values irrespective of the adhesive employed and the ADL. A higher frequency of pre-testing failure specimens was observed for the cycled groups. A thicker adhesive layer, acting as an intermediate flexible layer, did not min-imize the damage caused by thermal/mechanical load cycling for a three-step etch-and-rinse and two-step self-etch system.
Resumo:
A minimally invasive caries-removal technique preserves potentially repairable, caries-affected dentin. Mineral-releasing cements may promote remineralization of soft residual dentin. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-PO(4)) used for indirect pulp-capping. Permanent carious and sound teeth indicated for extraction were excavated and restored either with or without the Ca-PO(4) base (control), followed by adhesive restoration. Study teeth were extracted after 3 months, followed by sectioning and in vitro microhardness analysis of the cavity floor to 115-mu m depth. Caries-affected dentin that received acid conditioning prior to Ca-PO(4) basing showed significantly increased Knoop hardness near the cavity floor. The non-etched group presented results similar to those of the non-treated group. Acid etching prior to cement application increased microhardness of residual dentin near the interface after 3 months in situ.
Resumo:
Minimally invasive caries-removal procedures remove only caries-infected dentin and preserve caries-affected dentin that becomes remineralized. Dental cements containing calcium phosphate promote remineralization. This study evaluated the in vivo remineralization capacity of resin-based calcium-phosphate cement (Ca-P) used for indirect pulp-capping. Carious and sound teeth indicated for extraction were randomly restored with the Ca-P base or without base (control), followed by adhesive restoration. Study teeth were extracted after three months, followed by elemental analysis of the cavity floor. Mineral content of affected or sound dentin at the cavity floor was quantified by electron probe micro-analysis to 100-mu m depth. After three months, caries-affected dentin underneath the Ca-P base showed significantly increased calcium and phosphorus content to a depth of 30 mu m. Mineral content of treated caries-affected dentin was in the range of healthy dentin, revealing the capacity of Ca-P base to promote remineralization of caries-affected dentin.
Resumo:
The surface morphology, structure and composition of human dentin treated with a femtosecond infrared laser (pulse duration 500 fs, wavelength 1030 nm, fluences ranging from 1 to 3 J cm(-2)) was studied by scanning electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. The average dentin ablation threshold under these conditions was 0.6 +/- 0.2 J cm(-2) and the ablation rate achieved in the range 1 to 2 mu m/pulse for an average fluence of 3 J cm(-2). The ablation surfaces present an irregular and rugged appearance, with no significant traces of melting, deformation, cracking or carbonization. The smear layer was entirely removed by the laser treatment. For fluences only slightly higher than the ablation threshold the morphology of the laser-treated surfaces was very similar to the dentin fracture surfaces and the dentinal tubules remained open. For higher fluences, the surface was more porous and the dentin structure was partially concealed by ablation debris and a few resolidified droplets. Independently on the laser processing parameters and laser processing method used no sub-superficial cracking was observed. The dentin constitution and chemical composition was not significantly modified by the laser treatment in the processing parameter range used. In particular, the organic matter is not preferentially removed from the surface and no traces of high temperature phosphates, such as the beta-tricalcium phosphate, were observed. The achieved results are compatible with an electrostatic ablation mechanism. In conclusion, the high beam quality and short pulse duration of the ultrafast laser used should allow the accurate preparation of cavities, with negligible damage of the underlying material.
Resumo:
Objective. The objective of this study was to evaluate the penetration of 2.5% NaOCl associated with 17.0% EDTA, 1.0% citric acid, and 1.0% peracetic acid into dentin tubules.Study design. The roots of 44 bovine incisors were cross-sectioned and 5-mm-long fragments were produced from their middle thirds. The specimens were instrumented with ProTaper hand files, stained in crystal violet, then sectioned mesiodistally. The buccal fragments were divided into 4 groups (n = 9) and subjected to 2 consecutive 10-minute immersion periods in one of the following acid solutions combined with 2.5% NaOCl: 17.0% EDTA (group 1), 1.0% citric acid (group 2), and 1.0% peracetic acid (group 3). Nine fragments were immersed in 2.5% NaOCl (group 4). The analysis of the penetration of NaOCl solutions into dentin was performed by measuring the depth of crystal violet stain that was bleached using a steromicroscope under x50 magnification. Statistical comparisons were carried out by Kruskal-Wallis and Dunn's tests at the 5% significance level.Results. Group 1 showed less penetration into dentin than group 4 (P < .05). No statistically significant differences were observed among groups 2, 3, and 4 (P > .05).Conclusions. Association of NaOCl with acid solutions did not increase its penetration depth into root dentin. (Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2011;112:e155-e159)
Resumo:
Background and Objectives. The adhesion of dental materials is important for the success of treatment. The aim of this study is to evaluate the bond strength of a composite resin applied with a self-etching adhesive system in different dentins after irradiation with Er:YAG and Nd:YAG lasers, observing their morphologic pattern using Scanning Electronic Microscopy (SEM). Materials and Methods. The buccal surface of 72 bovine incisors was worn until exposure of medium depth dentin. The specimens were divided into three groups; GI: normal, GII: demineralized and GIII: hypermineralized dentin. These were also divided into two subgroups; A-irradiated for 30 s with Er:YAG laser in noncontact mode at 40 mJ and 6 Hz and B- irradiated for 30 s with Nd:YAG laser in contact mode at 60 mJ and 10 Hz. The adhesive system Clearfil SE. Bond (Kuraray) and composite resin Tetric Ceram (Vivadent) were applied on the irradiated area by the incremental technique. After storage for 24 h in distilled water at 37 degrees C, the specimens were submitted to the shear strength test in a universal testing machine (EMIC) at a crosshead speed of 1.0 mm/min. Other specimens were made to be analyzed by SEM. Results. The results were statistically analyzed by Analysis of Variance and the Tukey test. Regardless of the type of dentin, the bond strength of specimens irradiated with the Nd:YAG laser (8,94 +/- 2,07) was higher compared to specimens irradiated with the Er:YAG laser (7,03 +/- 2,47); the highest bond strength was obtained for the group of hypermineralized dentin irradiated with the Nd:YAG laser. The SEM analysis showed that the Er:YAG laser caused opening of tubules and the Nd:YAG laser produced areas of fusion as well as regions of opening of dentinal tubules. Conclusions. The dentin showed different morphological patterns and the laser promote alterations on their surfaces, influencing the bond strength of the composite resin. (C) 2010 Laser Institute of America.
Resumo:
The purpose of this study was to determine the pH, after defined periods of time, in cavities prepared in the facial surface of the cervical, middle, and apical regions of roots obturated with calcium hydroxide pastes. Root canal instrumentation was performed on 40 recently extracted, single-rooted human teeth. Cavities 1.5 mm in diameter and 0.75 mm in depth were prepared in the cervical, middle, and apical regions of the facial surface of each root. Teeth were randomly divided into four groups. One group was left unobturated and served as a control. The three remaining groups were obturated with either aqueous calcium hydroxide, calcium hydroxide mixed with camphorated monochlorophenol, or Pulpdent pastes. Access cavities and apical foramina were closed with Cavit. Each tooth was stored individually in a vial containing unbuffered isotonic saline. pH at the surface was measured in the cervical, middle, and apical cavities at 0 and 3, 7, 14, 21, 28, 45, 60, 90, and 120 days. Results indicate that hydroxyl ions derived from calcium hydroxide pastes diffused through root dentin at all regions over the experimental period of 120 days. The pattern of pH change at the tooth surface was similar in all regions of the root, regardless of the type of calcium hydroxide paste used. This was a rapid rise in pH from a control value of pH 7.6, to greater than pH 9.5 by 3 days, followed by a small decline to pH 9.0 over the next 18 days, before finally rising and remaining at, or above pH 10.0 for the remainder of the experimental period. Pulpdent paste in the apical region was the only exception in this pattern, producing a pH rise nearly one full unit below the other pastes, pH 9.3. These results indicate that, for all pastes tested, a high pH is maintained at the root surface for at least 120 days. Copyright © 1996 by The American Association of Endodontists.