109 resultados para demodulation
Resumo:
A novel detection technique to estimate the amount of chirp in fiber Bragg gratings (FBGs) is proposed. This method is based on the fact that reflectivity at central wavelength of FBG reflection changes with strain/temperature gradient (linear chirp) applied to the same. Transfer matrix approach was used to vary different grating parameters (length, strength and apodization) to optimize variation of reflectivity with linear chirp. Analysis is done for different sets of `FBG length-refractive index strength' combinations for which reflectivity vary linearly with linear chirp over a decent measurement range. This article acts as a guideline to choose appropriate grating parameters in designing sensing apparatus based on change in reflectivity at central wavelength of FBG reflection.
Resumo:
We propose a Riesz transform approach to the demodulation of digital holograms. The Riesz transform is a higher-dimensional extension of the Hilbert transform and is steerable to a desired orientation. Accurate demodulation of the hologram requires a reliable methodology by which quadrature-phase functions (or simply, quadratures) can be constructed. The Riesz transform, by itself, does not yield quadratures. However, one can start with the Riesz transform and construct the so-called vortex operator by employing the notion of quasi-eigenfunctions, and this approach results in accurate quadratures. The key advantage of using the vortex operator is that it effectively handles nonplanar fringes (interference patterns) and has the ability to compensate for the local orientation. Therefore, this method results in aberration-free holographic imaging even in the case when the wavefronts are not planar. We calibrate the method by estimating the orientation from a reference hologram, measured with an empty field of view. Demodulation results on synthesized planar as well as nonplanar fringe patterns show that the accuracy of demodulation is high. We also perform validation on real experimental measurements of Caenorhabditis elegans acquired with a digital holographic microscope. (c) 2012 Optical Society of America
Resumo:
Narrowband spectrograms of voiced speech can be modeled as an outcome of two-dimensional (2-D) modulation process. In this paper, we develop a demodulation algorithm to estimate the 2-D amplitude modulation (AM) and carrier of a given spectrogram patch. The demodulation algorithm is based on the Riesz transform, which is a unitary, shift-invariant operator and is obtained as a 2-D extension of the well known 1-D Hilbert transform operator. Existing methods for spectrogram demodulation rely on extension of sinusoidal demodulation method from the communications literature and require precise estimate of the 2-D carrier. On the other hand, the proposed method based on Riesz transform does not require a carrier estimate. The proposed method and the sinusoidal demodulation scheme are tested on real speech data. Experimental results show that the demodulated AM and carrier from Riesz demodulation represent the spectrogram patch more accurately compared with those obtained using the sinusoidal demodulation. The signal-to-reconstruction error ratio was found to be about 2 to 6 dB higher in case of the proposed demodulation approach.
Binaural Signal Processing Motivated Generalized Analytic Signal Construction and AM-FM Demodulation
Resumo:
Binaural hearing studies show that the auditory system uses the phase-difference information in the auditory stimuli for localization of a sound source. Motivated by this finding, we present a method for demodulation of amplitude-modulated-frequency-modulated (AM-FM) signals using a ignal and its arbitrary phase-shifted version. The demodulation is achieved using two allpass filters, whose impulse responses are related through the fractional Hilbert transform (FrHT). The allpass filters are obtained by cosine-modulation of a zero-phase flat-top prototype halfband lowpass filter. The outputs of the filters are combined to construct an analytic signal (AS) from which the AM and FM are estimated. We show that, under certain assumptions on the signal and the filter structures, the AM and FM can be obtained exactly. The AM-FM calculations are based on the quasi-eigenfunction approximation. We then extend the concept to the demodulation of multicomponent signals using uniform and non-uniform cosine-modulated filterbank (FB) structures consisting of flat bandpass filters, including the uniform cosine-modulated, equivalent rectangular bandwidth (ERB), and constant-Q filterbanks. We validate the theoretical calculations by considering application on synthesized AM-FM signals and compare the performance in presence of noise with three other multiband demodulation techniques, namely, the Teager-energy-based approach, the Gabor's AS approach, and the linear transduction filter approach. We also show demodulation results for real signals.
Resumo:
We propose a two-dimensional (2-D) multicomponent amplitude-modulation, frequency-modulation (AM-FM) model for a spectrogram patch corresponding to voiced speech, and develop a new demodulation algorithm to effectively separate the AM, which is related to the vocal tract response, and the carrier, which is related to the excitation. The demodulation algorithm is based on the Riesz transform and is developed along the lines of Hilbert-transform-based demodulation for 1-D AM-FM signals. We compare the performance of the Riesz transform technique with that of the sinusoidal demodulation technique on real speech data. Experimental results show that the Riesz-transform-based demodulation technique represents spectrogram patches accurately. The spectrograms reconstructed from the demodulated AM and carrier are inverted and the corresponding speech signal is synthesized. The signal-to-noise ratio (SNR) of the reconstructed speech signal, with respect to clean speech, was found to be 2 to 4 dB higher in case of the Riesz transform technique than the sinusoidal demodulation technique.
Particle filters for demodulation of M-ary modulated signals in noisy fading communication channels.
Resumo:
Demodulation is an ill-posed problem whenever both carrier and envelope signals are broadband and unknown. Here, we approach this problem using the methods of probabilistic inference. The new approach, called Probabilistic Amplitude Demodulation (PAD), is computationally challenging but improves on existing methods in a number of ways. By contrast to previous approaches to demodulation, it satisfies five key desiderata: PAD has soft constraints because it is probabilistic; PAD is able to automatically adjust to the signal because it learns parameters; PAD is user-steerable because the solution can be shaped by user-specific prior information; PAD is robust to broad-band noise because this is modeled explicitly; and PAD's solution is self-consistent, empirically satisfying a Carrier Identity property. Furthermore, the probabilistic view naturally encompasses noise and uncertainty, allowing PAD to cope with missing data and return error bars on carrier and envelope estimates. Finally, we show that when PAD is applied to a bandpass-filtered signal, the stop-band energy of the inferred carrier is minimal, making PAD well-suited to sub-band demodulation. © 2006 IEEE.
Resumo:
A number of recent scientific and engineering problems require signals to be decomposed into a product of a slowly varying positive envelope and a quickly varying carrier whose instantaneous frequency also varies slowly over time. Although signal processing provides algorithms for so-called amplitude-and frequency-demodulation (AFD), there are well known problems with all of the existing methods. Motivated by the fact that AFD is ill-posed, we approach the problem using probabilistic inference. The new approach, called probabilistic amplitude and frequency demodulation (PAFD), models instantaneous frequency using an auto-regressive generalization of the von Mises distribution, and the envelopes using Gaussian auto-regressive dynamics with a positivity constraint. A novel form of expectation propagation is used for inference. We demonstrate that although PAFD is computationally demanding, it outperforms previous approaches on synthetic and real signals in clean, noisy and missing data settings.
Resumo:
Amplitude demodulation is an ill-posed problem and so it is natural to treat it from a Bayesian viewpoint, inferring the most likely carrier and envelope under probabilistic constraints. One such treatment is Probabilistic Amplitude Demodulation (PAD), which, whilst computationally more intensive than traditional approaches, offers several advantages. Here we provide methods for estimating the uncertainty in the PAD-derived envelopes and carriers, and for learning free-parameters like the time-scale of the envelope. We show how the probabilistic approach can naturally handle noisy and missing data. Finally, we indicate how to extend the model to signals which contain multiple modulators and carriers.
Resumo:
Auditory scene analysis is extremely challenging. One approach, perhaps that adopted by the brain, is to shape useful representations of sounds on prior knowledge about their statistical structure. For example, sounds with harmonic sections are common and so time-frequency representations are efficient. Most current representations concentrate on the shorter components. Here, we propose representations for structures on longer time-scales, like the phonemes and sentences of speech. We decompose a sound into a product of processes, each with its own characteristic time-scale. This demodulation cascade relates to classical amplitude demodulation, but traditional algorithms fail to realise the representation fully. A new approach, probabilistic amplitude demodulation, is shown to out-perform the established methods, and to easily extend to representation of a full demodulation cascade.
Resumo:
We present a novel reference compensation method for eliminating environmental noise in interferometric wavelength shift demodulation for dynamic fiber Bragg grating (FBG) sensors. By employing a shielded wavelength-division-multiplexed reference FBG in the system the environmental noise is mea, sured from the reference channel, and then subtracted from the demodulation result of each sensor channel. An approximate 40 dB reduction of the environmental noise has been experimentally achieved over a frequency range from 20 Hz to 2 kHz. This method is also suitable for the elimination of broadband environmental noise. The corresponding FBG sensor array system proposed in this paper has shown a wave-length resolution of 7 x 10(-4) pm/root Hz. (c) 2009 Elsevier B.V. All rights reserved.