945 resultados para demic diffusion
Resumo:
The spread of culture and language in human populations is explained by two alternative models: the demic diffusion model, which involves mass movement of people; and the cultural diffusion model, which refers to cultural impact between populations and in
Resumo:
10 p.
Resumo:
The importance of the process of Neolithization for the genetic make-up of European populations has been hotly debated, with shifting hypotheses from a demic diffusion (DD) to a cultural diffusion (CD) model. In this regard, ancient DNA data from the Balkan Peninsula, which is an important source of information to assess the process of Neolithization in Europe, is however missing. In the present study we show genetic information on ancient populations of the South-East of Europe. We assessed mtDNA from ten sites from the current territory of Romania, spanning a time-period from the Early Neolithic to the Late Bronze Age. mtDNA data from Early Neolithic farmers of the Starcevo Cris culture in Romania (Carcea, Gura Baciului and Negrilesti sites), confirm their genetic relationship with those of the LBK culture (Linienbandkeramik Kultur) in Central Europe, and they show little genetic continuity with modern European populations. On the other hand, populations of the Middle-Late Neolithic (Boian, Zau and Gumelnita cultures), supposedly a second wave of Neolithic migration from Anatolia, had a much stronger effect on the genetic heritage of the European populations. In contrast, we find a smaller contribution of Late Bronze Age migrations to the genetic composition of Europeans. Based on these findings, we propose that permeation of mtDNA lineages from a second wave of Middle-Late Neolithic migration from North-West Anatolia into the Balkan Peninsula and Central Europe represent an important contribution to the genetic shift between Early and Late Neolithic populations in Europe, and consequently to the genetic make-up of modern European populations.
Resumo:
The origins of early farming and its spread to Europe have been the subject of major interest for some time. The main controversy today is over the nature of the Neolithic transition in Europe: the extent to which the spread was, for the most part, indigenous and animated by imitatio (cultural diffusion) or else was driven by an influx of dispersing populations (demic diffusion). We analyze the spatiotemporal dynamics of the transition using radiocarbon dates from 735 early Neolithic sites in Europe, the Near East, and Anatolia. We compute great-circle and shortest-path distances from each site to 35 possible agricultural centers of origin—ten are based on early sites in the Middle East and 25 are hypothetical locations set at 58 latitude/longitude intervals. We perform a linear fit of distance versus age (and vice versa) for each center. For certain centers, high correlation coefficients (R . 0.8) are obtained. This implies that a steady rate or speed is a good overall approximation for this historical development. The average rate of the Neolithic spread over Europe is 0.6–1.3 km/y (95% confidence interval). This is consistent with the prediction of demic diffusion(0.6–1.1 km/y). An interpolative map of correlation coefficients, obtained by using shortest-path distances, shows that the origins of agriculture were most likely to have occurred in the northern Levantine/Mesopotamian area
Resumo:
In recent years, studies based on isoenzymatic patterns of geographic variation have revealed that what is usually called the Africanized honey bee does not constitute a single population. Instead, several local populations exist with various degrees of admixture with European honey bees. In this paper, we evaluated new data on morphometric patterns of Africanized honey bees collected at 42 localities in Brazil, using univariate and multivariate (canonical) trend surface and spatial autocorrelation analyses. The clinal patterns of variation found for genetically independent characters (wing size characters and some wing venation angles) are concordant with previous studies of malate dehydrogenase (MDH) allelic frequencies and support the hypothesis that larger honey bees in southern and southeastern Brazil originated by racial admixture in the initial phases of African honey bee colonization. Geographic variation patterns of Africanized honey bee populations reflect a demic diffusion process in which European genes were gradually lost because of the higher fitness of the African gene pool in Neotropical environmental conditions.
Resumo:
[ES]La neolitización ha sido entendida como un proceso de adopción de innovaciones tecnológicas y económicas por parte de grupos cazadores recolectores que, o bien traídas desde fuera a través de una difusión démica, o bien a través de redes de intercambio, acabaron por asimilarse. Sin embargo, no se ha considerado la neolitización desde la óptica de la entrada en contacto de dos tipos de formaciones socioeconómicas con diferente grado de organización y desarrollo. En este trabajo analizaremos y confrontaremos las variables que configuran los rasgos esenciales de ambas realidades sociales para, a través de un ejemplo concreto, analizar las posibles situaciones de contacto. [EN] The neolithisation has been understood as a process of adoption of technological and economic innovations by groups of hunter-gatherers that, brought from outside through a demic diffusion or through exchange networks, were finally assimilated. However, neolithisation has not been considered from the perspective of the of two types of socioeconomic formations with diverse level of organisation and development. In this paper, we analyse and compare the variables that shape the essential features of both social realities, in order to analyse posible contact situations through a concrete example.
Resumo:
Mit der vorliegenden Arbeit wurden erstmals prähistorische Bevölkerungsstrukturen in der osteuropäischen Steppe von der Oberthrakischen Tiefebene bis zur Wolga populationsgenetisch untersucht. Mit Multiplex-PCR und 454-Sequencing wurden von 65 kupfer- und bronzezeitlichen Individuen die Hypervariable Region I und 30 Abschnitte der coding region der mitochondrialen DNA analysiert. Außerdem wurden bis zu 20 putativ selektierte autosomale SNPs und ein geschlechtsspezifischer Locus genotypsiert. Zu Vergleichszwecken wurden veröffentlichte prähistorische DNA-Daten aus Westeurasien und moderne DNA-Sequenzen herangezogen. Die Ergebnisse stützen die Annahme, dass frühneolithische Bauern aus Südosteuropa durch demische Diffusion an der Etablierung der Viehwirtschaft in der Steppe beteiligt waren. Die durchweg niedrigen FST-Werte zwischen der frühbronzezeitlichen Jamnaja-Kultur in der Steppe und den aufeinanderfolgenden neolithischen Kulturen Mitteleuropas sprechen für regelmäßige Kontakte. Die der Jamnaja-Kultur nachfolgende Katakombengrabkultur ist von einem hohen Anteil der in nord- und osteuropäischen Jäger/Sammler-Populationen verbreiteten Haplogruppe U4 geprägt. Niedrige FST-Werte zwischen den prähistorischen Steppenpopulationen und der heutigen Bevölkerung Mittel- und Osteuropas weisen auf genetische Kontinuität hin. Die nukleären Genotypenfrequenzen bestätigt dies. Der moderne europäische Genpool lässt sich nach aktuellem Kenntnisstand auf drei Wurzeln zurückführen: indigene Mesolithiker, frühe Bauern aus dem Nahen Osten und eine nordeurasische Komponente jungpalaeolithischen Ursprungs. Letztere könnte vielleicht über die nordpontische Population in das Erbgut spätneolithischer Europäer gelangt sein.
Resumo:
Farming and herding were introduced to Europe from the Near East and Anatolia; there are, however, considerable arguments about the mechanisms of this transition. Were it the people who moved and either outplaced, or admixed with, the indigenous hunter-gatherer groups? Or was it material and information that moved---the Neolithic Package---consisting of domesticated plants and animals and the knowledge of their use? The latter process is commonly referred to as cultural diffusion and the former as demic diffusion. Despite continuous and partly combined efforts by archaeologists, anthropologists, linguists, palaeontologists and geneticists, a final resolution of the debate has not yet been reached. In the present contribution we interpret results from the Global Land Use and technological Evolution Simulator (GLUES). GLUES is a mathematical model for regional sociocultural development, embedded in the geoenvironmental context, during the Holocene. We demonstrate that the model is able to realistically hindcast the expansion speed and the inhomogeneous space-time evolution of the transition to agropastoralism in western Eurasia. In contrast to models that do not resolve endogenous sociocultural dynamics, our model describes and explains how and why the Neolithic advanced in stages. We uncouple the mechanisms of migration and information exchange and also of migration and the spread of agropastoralism. We find that: (1) An indigenous form of agropastoralism could well have arisen in certain Mediterranean landscapes, but not in Northern and Central Europe, where it depended on imported technology and material. (2) Both demic diffusion by migration and cultural diffusion by trade may explain the western European transition equally well. (3) Migrating farmers apparently contribute less than local adopters to the establishment of agropastoralism. Our study thus underlines the importance of adoption of introduced technologies and economies by resident foragers.
Resumo:
Cultural inheritance can be considered as a mechanism of adaptation made possible by communication, which has reached its greatest development in humans and can allow long-term conservation or rapid change of culturally transmissible traits depending on circumstances and needs. Conservativeness/flexibility is largely modulated by mechanisms of sociocultural transmission. An analysis was carried out by testing the fit of three models to 47 cultural traits (classified in six groups) in 277 African societies. Model A (demic diffusion) is conservation over generations, as shown by correlations of cultural traits with language, used as a measure of historical connection. Model B (environmental adaptation) is measured by correlation to the natural environment. Model C (cultural diffusion) is the spread to neighbors by social contact in an epidemic-like fashion and was tested by measuring the tightness of geographic clustering of the traits. Most traits examined, in particular those affecting family structure and kinship, showed great conservation over generations, as shown by the fit of model A. They are most probably transmitted by family members. This is in agreement with the theoretical demonstration that cultural transmission in the family (vertical) is the most conservative one. Some traits show environmental effects, indicating the importance of adaptation to physical environment. Only a few of the 47 traits showed tight geographic clustering indicating that their spread to nearest neighbors follows model C, as is usually the case for transmission among unrelated people (called horizontal transmission).
Resumo:
To examine population affinities in light of the ‘dual structure model’, frequencies of 21 nonmetric cranial traits were analyzed in 17 prehistoric to recent samples from Japan and five from continental northeast Asia. Eight bivariate plots, each representing a different bone or region of the skull, as well as cluster analysis of 21-trait mean measures of divergence using multidimensional scaling and additive tree techniques, revealed good discrimination between the Jomon-Ainu indigenous lineage and that of the immigrants who arrived from continental Asia after 300 BC. In Hokkaido, in agreement with historical records, Ainu villages of Hidaka province were least, and those close to the Japan Sea coast were most, hybridized with Wajin. In the central islands, clines were identified among Wajin skeletal samples whereby those from Kyushu most resembled continental northeast Asians, while those from the northernmost prefectures of Tohoku apparently retained the strongest indigenous heritage. In the more southerly prefectures of Tohoku, stronger traces of Jomon ancestry prevailed in the cohort born during the latest Edo period than in the one born after 1870. Thus, it seems that increased inter-regional mobility and gene flow following the Meiji Restoration initiated the most recent episode in the long process of demic diffusion that has helped to shape craniofacial change in Japan.
Resumo:
To examine population affinities in light of the ‘dual structure model’, frequencies of 21 nonmetric cranial traits were analyzed in 17 prehistoric to recent samples from Japan and five from continental northeast Asia. Eight bivariate plots, each representing a different bone or region of the skull, as well as cluster analysis of 21-trait mean measures of divergence using multidimensional scaling and additive tree techniques, revealed good discrimination between the Jomon-Ainu indigenous lineage and that of the immigrants who arrived from continental Asia after 300 BC. In Hokkaido, in agreement with historical records, Ainu villages of Hidaka province were least, and those close to the Japan Sea coast were most, hybridized with Wajin. In the central islands, clines were identified among Wajin skeletal samples whereby those from Kyushu most resembled continental northeast Asians, while those from the northernmost prefectures of Tohoku apparently retained the strongest indigenous heritage. In the more southerly prefectures of Tohoku, stronger traces of Jomon ancestry prevailed in the cohort born during the latest Edo period than in the one born after 1870. Thus, it seems that increased inter-regional mobility and gene flow following the Meiji Restoration initiated the most recent episode in the long process of demic diffusion that has helped to shape craniofacial change in Japan.
Resumo:
Diffusion equations that use time fractional derivatives are attractive because they describe a wealth of problems involving non-Markovian Random walks. The time fractional diffusion equation (TFDE) is obtained from the standard diffusion equation by replacing the first-order time derivative with a fractional derivative of order α ∈ (0, 1). Developing numerical methods for solving fractional partial differential equations is a new research field and the theoretical analysis of the numerical methods associated with them is not fully developed. In this paper an explicit conservative difference approximation (ECDA) for TFDE is proposed. We give a detailed analysis for this ECDA and generate discrete models of random walk suitable for simulating random variables whose spatial probability density evolves in time according to this fractional diffusion equation. The stability and convergence of the ECDA for TFDE in a bounded domain are discussed. Finally, some numerical examples are presented to show the application of the present technique.