982 resultados para dehydrogenase-activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A phytochemical investigation of the ethanolic extract of stalks of Senna martiana Benth. (Leguminoseae), native specie of northeast Brazil, resulted in the isolation and spectroscopic characterization of a new bianthrone glycoside, martianine 1 (10,10'-il-chrysophanol-10-oxi10,10'-bi-glucosyl). Its identification was established by HRMS, IR and 2D NMR experiments. The evaluation of martianine trypanocidal activity was carried out against gliceraldehyde 3-phosphate dehydrogenase enzyme from Trypanosoma cruzi. Its inhibitory constant (Ki) is in the low micromolar concentration and it was determined by isothermal titration calorimetry to be 27.3 ± 2.47 µmol L-1. The non-competitive mechanism is asserted to be putative of the mode of action martianine displays against T. cruzi GAPDH. Results show that martianine has a great potential to become new lead molecule by inhibiting this key enzyme and for the development of new drugs against Chagas disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Experiments for the investigation of dehydrogenase activity of washed cells of a strains of Br. abortus and another of Br. suis in presence of different single added substrates are reported. The activity was measured as the amount of formazan produced by the reduction of 2, 3, 5-triphenyltetrazolum chloride acting as a hydrogen ions acceptor, at pH 7.0. In a general manner the dehydrogenase activity of Br. suis was much more intense than that of Br. abortus (fig. 5). In the conditions of the experiments Br. abortus oxidized L-arabinose, D-galactose, D-glucose, glycerol, D-xylose, DL-alanine, D-fructose, and D-sorbitol. Brucella suis oxidized D-xylose, L-arabinose, D-glucose, D-galactose, DL-alanine, sodium acetate, maltose, glycine, D-fructose, and D-sorbitol. Glycerol was oxidized by Br. abortus but its oxidation by Br. suir was very slight. Sodium acetate and maltose were intensely oxidized by Br. suir but not by Br. abortus. The sites of more intense enzymatic acitivity were seen as small red colored round granules located in one pole of the cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The alpha-glycerophosphate dehydrogenase (alpha-GPDH) activity in flight muscles of Panstrongylus megistus and Triatoma sordida, vectors of Chagas disease in Brazil, was studied. Both species showed higher enzymatic activities in fliers than in non-fliers insects. T. sordida exhibited a higher proportion of flier insects than P. megistus. A possible role of alpha-GPDH on triatomines flight is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High aldehyde dehydrogenase (ALDH) activity has been associated with stem and progenitor cells in various tissues. Human cord blood and bone marrow ALDH-bright (ALDH(br)) cells have displayed angiogenic activity in preclinical studies and have been shown to be safe in clinical trials in patients with ischemic cardiovascular disease. The presence of ALDH(br) cells in the heart has not been evaluated so far. We have characterized ALDH(br) cells isolated from mouse hearts. One percent of nonmyocytic cells from neonatal and adult hearts were ALDH(br). ALDH(very-br) cells were more frequent in neonatal hearts than adult. ALDH(br) cells were more frequent in atria than ventricles. Expression of ALDH1A1 isozyme transcripts was highest in ALDH(very-br) cells, intermediate in ALDH(br) cells, and lowest in ALDH(dim) cells. ALDH1A2 expression was highest in ALDH(very-br) cells, intermediate in ALDH(dim) cells, and lowest in ALDH(br) cells. ALDH1A3 and ALDH2 expression was detectable in ALDH(very-br) and ALDH(br) cells, unlike ALDH(dim) cells, albeit at lower levels compared with ALDH1A1 and ALDH1A2. Freshly isolated ALDH(br) cells were enriched for cells expressing stem cell antigen-1, CD34, CD90, CD44, and CD106. ALDH(br) cells, unlike ALDH(dim) cells, could be grown in culture for more than 40 passages. They expressed sarcomeric α -actinin and could be differentiated along multiple mesenchymal lineages. However, the proportion of ALDH(br) cells declined with cell passage. In conclusion, the cardiac-derived ALDH(br) population is enriched for progenitor cells that exhibit mesenchymal progenitor-like characteristics and can be expanded in culture. The regenerative potential of cardiac-derived ALDH(br) cells remains to be evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glucose-6-phosphate dehydrogenase (G6PD) activity and the affinity for its substrate glucose-6-phosphate were investigated under conditions similar to the physiological environment in terms of ionic strength (I: 0.188), cation concentration, pH 7.34, and temperature (37oC). A 12.4, 10.4 and 21.4% decrease was observed in G6PD B, G6PD A+ and G6PD A- activities, respectively. A Km increase of 95.1, 94.4 and 95.4% was observed in G6PD B, G6PD A+ and G6PD A-, respectively, leading to a marked decrease in affinity. In conclusion, the observation of the reduced activity and affinity for its natural substrate reflects the actual pentose pathway rate. It also suggests a much lower NADPH generation, which is crucial mostly in G6PD-deficient individuals, whose NADPH availability is poor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyruvate dehydrogenase (PDH) plays an important role in regulating carbohydrate oxidation in skeletal muscle. PD H is deactivated by a set of PD H kinases (PD K 1-4) with PDK2 and 4 being the predominant isoforms in skeletal muscle. PDK2 is highly sensitive to pyruvate inhibition, and is the most abundant isoform, while PDKI and 4 protein content are normally lower. This study examined the PDK isoform content and PDHa activation in muscle at rest and 10 and 40 Hz stimulation from PDK2 knockout (PDK2KO) mice to delineate the role of PDK2 in activating the PDH complex during low and moderate intensity muscle contraction. PDHa activity was lower in PDK2KO mice during contraction while total PDK actitvity was -4 fold lower. PDK4 protein was not different, however PDKI partially compensated for the lack of PDK2 and was -56% higher than WT. PDKI is a very potent inhibitor of the PDH complex due to its phosphorylation site specificity and allosteric regulation. These results suggest that the site specificity and allosteric regulatory properties of the individual PDK isoforms are more important than total PDK activity in determining transformation of the complex and PDHa activity during acute muscle contraction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Metastatic progression of advanced prostate cancer is a major clinical problem. Identifying the cell(s) of origin in prostate cancer and its distant metastases may permit the development of more effective treatment and preventive therapies. In this study, aldehyde dehydrogenase (ALDH) activity was used as a basis to isolate and compare subpopulations of primary human prostate cancer cells and cell lines. ALDH-high prostate cancer cells displayed strongly elevated clonogenicity and migratory behavior in vitro. More strikingly, ALDH-high cells readily formed distant metastases with strongly enhanced tumor progression at both orthotopic and metastatic sites in preclinical models. Several ALDH isoforms were expressed in human prostate cancer cells and clinical specimens of primary prostate tumors with matched bone metastases. Our findings suggest that ALDH-based viable cell sorting can be used to identify and characterize tumor-initiating and, more importantly perhaps, metastasis-initiating cells in human prostate cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Specific targeting of the recombinant, Ca2+ -sensitive photoprotein, aequorin to intracellular organelles has provided new insights into the mechanisms of intracellular Ca2+ homeostasis. When applied to small mammalian cells, a major limitation of this technique has been the need to average the signal over a large number of cells. This prevents the identification of inter- or intracellular heterogeneities. Here we describe the imaging in single mammalian cells (CHO.T) of [Ca2+] with recombinant chimeric aequorin targeted to mitochondria. This was achieved by optimizing expression of the protein through intranuclear injection of cDNA and through the use of a charge-coupled device camera fitted with a dual microchannel plate intensifier. This approach allows accurate quantitation of the kinetics and extent of the large changes in mitochondrial matrix [Ca2+] ([Ca2+](m)) that follow receptor stimulation and reveal different behaviors of mitochondrial populations within individual cells. The technique is compared with measurements of [Ca2+](m) using the fluorescent indicator, rhod2. Comparison of [Ca2+](m) with the activity of the Ca2+ -sensitive matrix enzyme, pyruvate dehydrogenase (PDH), reveals that this enzyme is a target of the matrix [Ca2+] changes. Peak [Ca2+](m) values following receptor stimulation are in excess of those necessary for full activation of PDH in situ, but may be necessary for the activation of other mitochondrial dehydrogenases. Finally, the data suggest that the complex regulation of PDH activity by a phosphorylation-dephosphorylation cycle may provide a means by which changes in the frequency of cytosolic (and hence mitochondrial) [Ca2+] oscillations can be decoded by mitochondria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

According to the amyloid hypothesis for the pathogenesis of Alzheimer disease, beta-amyloid peptide (betaA) directly affects neurons, leading to neurodegeneration and tau phosphorylation. In rat hippocampal culture, betaA exposure activates tau protein kinase I/glycogen synthase kinase 3beta (TPKI/GSK-3beta), which phosphorylates tau protein into Alzheimer disease-like forms, resulting in neuronal death. To elucidate the mechanism of betaA-induced neuronal death, we searched for substrates of TPKI/GSK-3beta in a two-hybrid system and identified pyruvate dehydrogenase (PDH), which converts pyruvate to acetyl-CoA in mitochondria. PDH was phosphorylated and inactivated by TPKI/GSK-3beta in vitro and also in betaA-treated hippocampal cultures, resulting in mitochondrial dysfunction, which would contribute to neuronal death. In cholinergic neurons, betaA impaired acetylcholine synthesis without affecting choline acetyltransferase activity, which suggests that PDH is inactivated by betaA-induced TPKI/GSK-3beta. Thus, TPKI/GSK-3beta regulates PDH and participates in energy metabolism and acetylcholine synthesis. These results suggest that TPKI/GSK-3beta plays a key role in the pathogenesis of Alzheimer disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glutamate dehydrogenase (GDH; EC 1.4.1.2-1.4.1.4) catalyses in vitro the reversible amination of 2-oxoglutarate to glutamate. In vascular plants the in vivo direction(s) of the GDH reaction and hence the physiological role(s) of this enzyme remain obscure. A phylogenetic analysis identified two clearly separated groups of higher-plant GDH genes encoding either the alpha- or beta-subunit of the GDH holoenzyme. To help clarify the physiological role(s) of GDH, tobacco (Nicotiana tabacum L.) was transformed with either an antisense or sense copy of a beta-subunit gene, and transgenic plants recovered with between 0.5- and 34-times normal leaf GDH activity. This large modulation of GDH activity (shown to be via alteration of beta-subunit levels) had little effect on leaf ammonium or the leaf free amino acid pool, except that a large increase in GDH activity was associated with a significant decrease in leaf Asp (similar to 51%, P=0.0045). Similarly, plant growth and development were not affected, suggesting that a large modulation of GDH beta-subunit titre does not affect plant viability under the ideal growing conditions employed. Reduction of GDH activity and protein levels in an antisense line was associated with a large increase in transcripts of a beta-subunit gene, suggesting that the reduction in beta-subunit levels might have been due to translational inhibition. In another experiment designed to detect post-translational up-regulation of GDH activity, GDH over-expressing plants were subjected to prolonged dark-stress. GDH activity increased, but this was found to be due more likely to resistance of the GDH protein to stress-induced proteolysis, rather than to post-translational up-regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aim: We have studied human adult cardiac progenitor cells (CPCs) based on high aldehyde dehydrogenase activity (ALDH-hi), a property shared by many stem cells across tissues and organs. However, the role of ALDH in stem cell function is poorly known. In humans, there are 19 ALDH isoforms with different biological activities. The isoforms responsible for the ALDH-hi phenotype of stem cells are not well known but they may include ALDH1A1 and ALDH1A3 isoforms, which function in all-trans retinoic acid (RA) cell signaling. ALDH activity has been shown to regulate hematopoietic stem cell function via RA. We aimed to analyze ALDH isoform expression and the role of RA in human CPC function. Methods: Human adult CPCs were isolated from atrial appendage samples from patients who underwent heart surgery for coronary artery or valve disease. Atrial samples were either cultured as primary explants or enzymatically digested and sorted for ALDH activity by FACS. ALDH isoforms were determined by qRT-PCR. Cells were cultured in the presence or absence of the specific ALDH inhibitor DEAB, with or without RA. Induction of cardiac-specific genes in cells cultured in differentiation medium was measured by qRT-PCR. Results: While ALDH-hi CPCs grew in culture and could be expanded, ALDH-low cells grew poorly. CPC isolated as primary explant outgrowths expressed high levels of ALDH1A3 but not of other isoforms. CPCs isolated from cardiospheres expressed relatively high levels of all the 11 isoforms tested. In contrast, expanded CPCs and cardiosphere-derived cells expressed low levels of all ALDH isoforms. DEAB inhibited CPC growth in a dose-dependent manner, whereas RA rescued CPC growth in the presence of DEAB. In differentiation medium, ALDH-hi CPCs expressed approximately 300-fold higher levels of cardiac troponin T compared with their ALDH-low counterparts. Conclusions: High ALDH activity identifies human adult cardiac cells with high growth and cardiomyogenic potential. ALDH1A3 and, possibly, ALDH1A1 isoforms account for high ALDH activity and RA-mediated regulation of CPC growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this experiment was to quantify the extramatrical mycelium of the arbuscular mycorrhizal (AM) fungus Glomus etunicatum (Becker & Gerdemann) grown on maize (Zea mays L. var. Piranão) provided with various levels of phosphate fertilizer and harvested at 30, 60 and 90 days after planting (DAP). Total extramatrical mycelium (TEM) was extracted from soil using a modified membrane filtration method, followed by quantification using a grid intersection technique. Active extramatrical mycelium (AEM) proportion was determined using an enzymatic method which measured dehydrogenase activity by following iodonitrotetrazolium reduction. At low levels of added P, there was relatively less TEM than at high levels of added P, but the AEM proportion at low soil P availability was significantly greater than at high soil P.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The modification of pyruvate kinase (PK) and lactate dehydrogenase (LDH) activity in foot muscle of the mussel Mytilus galloprovincialis during exposure to air and recovery in water was investigated. In the course of exposure to air, the activity of these enzymes measured at high and low substrate concentrations showed successive increases and decreases. Returning the mussels to water after exposure to air affected enzyme activity in a manner similar to anaerobiosis. When measuring at saturated concentrations of substrates and substrate and coenzyme for PK and LDH, respectively, the maximum activation of PK (37%) was observed at 4 h of animal exposure to air, and for LDH (67%) at 6 h exposure to air. During 24 h of exposure of animals to air, PK activity practically reached the stock level, while LDH was still activated (148%). The change in lactate dehydrogenase activity in mussel muscle during anoxia and recovery is described here for the first time. Variation in pyruvate kinase activity during exposure to air and recovery is linked to the alteration of half-maximal saturation constants and maximal velocity for both substrates. The possible role of reversible phosphorylation in the regulation of pyruvate kinase and lactate dehydrogenase properties is discussed

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Invasive plant species have been shown to alter the microbial community composition of the soils they invade and it is suggested that this below-ground perturbation of potential pathogens, decomposers or symbionts may feedback positively to allow invasive success. Whether these perturbations are mediated through specific components of root exudation are not understood. We focussed on 8-hydroxyquinoline, a putative allelochemical of Centaurea diffusa (diffuse knapweed) and used an artificial root system to differentiate the effects of 8-hydroxyquinoline against a background of total rhizodeposition as mimicked through supply of a synthetic exudate solution. In soil proximal (0-10 cm) to the artificial root, synthetic exudates had a highly significant (P < 0.001) influence on dehydrogenase, fluorescein diacetate hydrolysis and urease activity. in addition, 8-hydroxyquinoline was significant (p = 0.003) as a main effect on dehydrogenase activity and interacted with synthetic exudates to affect urease activity (p = 0.09). Hierarchical cluster analysis of 16S rDNA-based DGGE band patterns also identified a primary affect of synthetic exudates and a secondary affect of 8-hydroxyquinoline on bacterial community structure. Thus, we show that the artificial rhizosphere produced by the synthetic exudates was the predominant effect, but, that the influence of the 8-hydroxyquinoline signal on the activity and structure of soil microbial communities could also be detected. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Orthodontic tooth movement uses mechanical forces that result in inflammation in the first days. Myeloperoxidase (MPO) is an enzyme found in polymorphonuclear neutrophil (PMN) granules, and it is used to estimate the number of PMN granules in tissues. So far, MPO has not been used to study the inflammatory alterations after the application of orthodontic tooth movement forces. The aim of this study was to determine MPO activity in the gingival crevicular fluid (GCF) and saliva (whole stimulated saliva) of orthodontic patients at different time points after fixed appliance activation. Methods: MPO was determined in the GCF and collected by means of periopaper from the saliva of 14 patients with orthodontic fixed appliances. GCF and saliva samples were collected at baseline, 2 hours, and 7 and 14 days after application of the orthodontic force. Results: Mean MPO activity was increased in both the GCF and saliva of orthodontic patients at 2 hours after appliance activation (P<0.02 for all comparisons). At 2 hours, PMN infiltration into the periodontal ligament from the orthodontic force probably results in the increased MPO level observed at this time point. Conclusions: MPO might be a good marker to assess inflammation in orthodontic movement; it deserves further studies in orthodontic therapy. (Am J Orthod Dentofacial Orthop 2010;138:613-6)