948 resultados para degradation of azo dye


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel nanocomposite of iron oxide and silicate, prepared through a reaction between a solution of iron salt and a dispersion of Laponite clay, was used as a catalyst for the photoassisted Fenton degradation of azo-dye Orange II. This catalyst is much cheaper than the Nafion-based catalysts, and our results illustrate that it can significantly accelerate the degradation of Orange II under the irradiation of UV light (lambda = 254 nm). An advantage of the catalyst is its long-term stability that was confirmed through using the catalyst for multiple runs in the degradation of Orange II. The effects of the H2O2 molar concentration, solution pH, wavelength and power of the LTV light, catalyst loading, and initial Orange II concentration on the degradation of Orange 11 were studied in detail. In addition, it was also found that discoloration of Orange 11 undergoes a faster kinetics than mineralization of Orange II and 75% total organic carbons of 0.1 mM Orange II can be eliminated after 90 min in the presence of 1.0 g of Fe-nanocomposite/L, 4.8 mM H2O2, and 1 x 8W UVC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photocatalytic degradation performance of photocatalysts TiO2 supported on 13-X, Na-Y, 4A zeolites with different loading content was evaluated using the photocatalytic oxidation of dyes direct fast scarlet 4BS and acid red 3B in aqueous medium. The results showed that the best reaction dosage of TiO2-zeolite catalysts is about 2 g/l and the photocatalytic kinetics follows first order for all supported catalysts. The photocatalytic activity order of the three series catalysts is 13X type >Y type >4A type. The physical state of titanium dioxide on the supports is evaluated by X-ray photoelectron spectra (XPS), powder X-ray diffraction (XRD), BET, and FTIR. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoinduced poling (PIP) is a new technique which allows the room‐temperature preparation of guest/host polymer films exhibiting significant polar order for nonlinear optical applications. We report a comparison of this novel technique with the conventional electrode poling procedure performed at the glass transition temperature of the polymer using disperse red 1/poly(methylmethacrylate) films. In particular, in situ second harmonic generation measurements show that levels of polar order achieved using these two techniques are similar. In contrast, the stability of the polar order is reduced by up to 20 times in terms of the decay time constant in films prepared using PIP although the stability is very dependent upon the temperature at which the poling was performed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Photoelectrocatalytic degradation of metallophtalocyanine reactive dye (turquoise blue 15) was performed using a Ti/TiO2 thin film photoanode prepared by sol-get method. Hundred percent of color removal and almost complete mineralization (95% at pH 2 and 85% at pH 8) where achieved after 6 h of photolectrocatalytic oxidation of 2.5 x 10(-5) mol L-1 AT15 dye in Na2SO4 mol L-1 under E = +1.2 V versus SCE. The method limitation occurs at dye concentration higher than 4 x 10-5 mol L-1, where the degradation rate becomes markedly slower. An important improvement in color removal and TOC reduction for 1 x 10(-3) mol L-1 metallophtalocyanine dye was achieved using a combined process. After 4 h of potential controlled electrolysis at -1.2 V on a cathode of platinum followed by 6 h of photoelectrocatalytic oxidation leads to 100% of color removal and 83% of TOC decay and eletrodeposition of 69% of the released copper originally presented as copperphtalocyanine complex, by electrodeposition on the cathode without any other treatment. (C) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Degradation of reactive dye Remazol Brilliant Orange 3R (RBO) has been performed using photoeletrocatalysis. A biased potential is applied across a titanium dioxide thin-film photoelectrode illuminated by UV light. It is suggested that charges photogenerated at the electrode surface give rise to chlorine generation and powerful oxidants (OH) that causes the dye solution to decolorize. Rate constants calculated from color decay versus time reveal a first-order reaction up to 5.0×10-5 mol l-1 in dye concentration. The best experimental conditions were found to be pH 6.0 and 1.0 mol l-1 NaCl when the photoelectrode was biased at +1V (versus SCE). Almost complete mineralization of the dye content (70% TOC reduction) was achieved in a 3-h period using these conditions. Effects of other electrolytes, dye concentration and applied potentials also have been investigated and are discussed. © 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The food dye tartrazine (CI 19140) was exposed to UV irradiation from an artificial source, a mercury vapor lamp, and a natural one, sunlight. It was observed that conditions such as energy dose, irradiation time, pH and initial dye concentration affected its discoloration. There was 100% of color removal, after 30 min of irradiation, when a dye solution 1 x 10(-5) mol L-1 was submitted to an energy dose of 37.8 J cm(-2). Liquid Chromatography coupled to Diode Array Detection and Mass Spectrometry confirmed the cleavage of the chromophore group and the formation of five by-products at low concentration. Although by-products were formed, the Salmonella/microsome mutagenicity assay performed for both, the dye solution at a dose of 5.34 mg/plate and the solutions obtained after exposure to UV irradiation, did not present mutagenic activity for TA98 and TA100 with and without S9. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The feasibility of the photobleaching of a textile azo dye, reactive orange 16 (C.I. 17757), in aqueous solution using titanium dioxide thin-film electrodes prepared by the sol-gel method was investigated. The best conditions for maximum photoelectrocatalytic degradation were found to be pH > 10 for Na2SO4 medium and pH < 6 for NaCl. In both situations, an applied potential of +1.0 V and low dye concentration are recommended, when 100% of color removal is obtained after 20 min of photoelectrocatalysis. The effects of side reaction pathway on the degradation rate of dye in sulfate and chloride medium were presented and the best performance are optimized to situations closed to that verified in the textile effluent. The influence of variables as applied potential, pH, supporting electrolyte and dye concentration on the kinetics of photoelectrochemical degradation also were investigated. Oxalic acid is identified by HPLC and UV-Vis spectrophotometric methods as the main degradation product generated after 180 min of photoelectrocatalysis of 4 x 10(-5) mol l(-1) dye in sodium sulphate pH 12 and NaCl pH 4.0 and a maximum reduction of 56 and 62% TOC was obtained, respectively. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work describes a more efficient methodology for the chlorination of water containing disperse dyes, where the chlorinated byproducts identified by mass spectra are compared. this investigation, we tested the degradation of Cl Disperse Blue 291 dye, 2-[(2-Bromo-4,6-dinitrophenyl)azo]-5-(diethylamino)-4-methoxyacetanilide) a commercial azo dye with mutagenic properties. The present work evaluates the photoelectrocatalytic efficiency of removing the Cl Disperse Blue 291 dye from a wastewater of the textile industry. We employed NaCl as a supporting electrolyte. It should be noted that photoelectrocatalytic techniques are non-conventional method of generating chlorine radicals. The by-products formed in this process were analyzed using spectrophotometry, liquid chromatography, dissolved organic carbon, mass spectral analysis and mutagenicity assays. The process efficiency was compared with the conventional chlorination process adopted during sewage and effluents treatment processes. This conventional chlorination process is less efficient in removing color, total organic carbon than the photoelectrochemistry technique. Furthermore, we shall demonstrate that the mutagenicity of the generated by-products obtained using photoelectrocatalysis is completely different from that obtained by the conventional oxidation of chloride ions in the drinking wafer treatment process. (C) 2012 Published by Elsevier B.V.