994 resultados para degradation mechanisms
Resumo:
Based upon specialised experience of rope mechanics spanning over 20 years, this paper reviews the processes of degradation and fatigue that are relevant to hoisting ropes in mines. The review is brought up to date with an account of the most recent work in this field, which identifies a torsional fatigue process and quantifies the impact of degradation upon the residual service life. A proper understanding of these processes is important in determining how different parameters of hoist design and operation interact to determine rope life. This knowledge is also important in informing decisions relating to rope discard based upon observed condition, as well is identifying the critical features that must be quantified reliably during inspection.
Resumo:
This experimental thesis concerns the study of the long-term behaviour of ancient bronzes recently excavated from burial conditions. The scientific interest is to clarify the effect of soil parameters on the degradation mechanisms of ancient bronze alloy. The work took into consideration bronzes recovered from the archaeological sites in the region of Dobrudja, Romania. The first part of research work was dedicated to the characterization of bronze artefacts using non destructive (micro-FTIR, reflectance mode) and micro-destructive (based on sampling and analysis of a stratigraphical section by OM and SEM-EDX) methods. Burial soils were geologically classified and analyzed by chemical methods (pH, conductivity, anions content). Most of objects analyzed showed a coarse and inhomogeneous corroded structure, often made up of several corrosion layers. This has been explained by the silt nature of soils, which contain low amount of clay and are, therefore, quite accessible to water and air. The main cause of a high dissolution rate of bronze alloys is the alternate water saturation and instauration of the soil, for example on a seasonal scale. Moreover, due to the vicinity of the Black Sea, the detrimental effect of chlorine has been evidenced for few objects, which were affected by the bronze disease. A general classification of corrosion layers was achieved by comparing values of the ratio Cu/Sn in the alloy and in the patina. Decuprification is a general trend, and enrichment of copper within the corrosion layers, due to the formation of thick layers of cuprite (Cu2O), is pointed out as well. Uncommon corrosion products and degradation patterns were presented as well, and they are probably due to peculiar local conditions taking place during the burial time, such as anaerobic conditions or fluctuating environmental conditions. In order to acquire a better insight into the corrosion mechanisms, the second part of the thesis has regarded simulation experiments, which were conducted on commercial Cu-Sn alloys, whose composition resembles those of ancient artefacts one. Electrochemical measurements were conducted in natural electrolytes, such as solutions extracted from natural soil (sampled at the archaeological sites) and seawater. Cyclic potentiodynamic experiments allowed appreciating the mechanism of corrosion in both cases. Soil extract’s electrolyte has been evaluated being a non aggressive medium, while artificial solution prepared by increasing the concentration of anions caused the pitting corrosion of the alloy, which is demonstrated by optical observations. In particular, electrochemical impedance spectroscopy allows assessing qualitatively the nature of corroded structures formed in soil and seawater. A double-structured layer is proposed, which differ, in the two cases, for the nature of the internal passive layer, which result defectiveness and porous in case of seawater.
Resumo:
The aim of this project was to achieve a deep understanding of the mechanisms by which Baltic amber degrades, in order to develop techniques for preventive conservation of archaeological amber objects belonging to the National Museum of Denmark’s collections. To examine deterioration of Baltic amber, a starting point was to identify and monitor surface and bulk properties which are affected during degradation. The way to operate consisted of the use of accelerated ageing to initiate degradation of raw Baltic amber samples in different conditions of relative humidity, oxygen exposure or pH and, successively, of the use of non/micro-destructive techniques to identify and quantify changes in visual, chemical and structural properties. A large piece of raw Baltic amber was used to prepare several test samples for two different kinds of accelerated ageing: thermal-ageing and photo-ageing. During the ageing, amber samples were regularly examined through several analytical techniques related to different information: appearance/colour change by visual examination, photography and colorimetry; chemical change by infrared spectroscopy, Raman spectroscopy and elemental analysis; rate of oxidation by oxygen measurement; qualitative analysis of released volatiles by gas chromatography – mass spectrometry. The obtained results were analysed through both critical evaluation and statistical study. After the interpretation of the achieved data, the main relations between amber and environmental factors during the degradation process became clearer and it was possible to identify the major pathways by which amber degrades, such as hydrolysis of esters into alcohols and carboxylic acids, thermal-oxidation and photo-oxidation of terpenoid components, depolymerisation and decomposition of the chemical structure. At the end it was possible to suggest a preventive conservation strategy based on the control of climatic, atmospheric and lighting parameters in the environment where Baltic amber objects are stored and displayed.
Resumo:
The two main objectives of the research work conducted were firstly, to investigate the processing and rheological characteristics of a new generation metallocene catalysed linear low density polyethylene (m-LLDPE), in order to establish the thermal oxidative degradation mechanism, and secondly, to examine the role of selected commercial stabilisers on the melt stability of the polymers. The unstabilised m-LLDPE polymer was extruded (pass I) using a twin screw extruder, at different temperatures (210-285°C) and screw speeds (50-20rpm) and was subjected to multiple extrusions (passes, 2-5) carried out under the same processing conditions used in the first pass. A traditional Ziegler/Natta catalysed linear low density polyethylene (z-LLDPE) produced by the same manufacturer was also subjected to a similar processing regime in order to compare the processability and the oxidative degradation mechanism (s) of the new m-LLDPE with that of the more traditional z-LLDPE. The effect of some of the main extrusion characteristics of the polymers (m-LLDPE and z-LLDPE) on their melt rheological behaviour was investigated by examining their melt flow performance monitored at two fixed low shear rate values, and their rheological behaviour investigated over the entire shear rates experienced during extrusion using a twin-bore capillary rheometer. Capillary rheometric measurements, which determine the viscous and elastic properties of polymers, have shown that both polymers are shear thinning but the m-LLDPE has a higher viscosity than z-LLDPE and the extent of reduction in viscosity of the former when the extrusion temperature was increased from 210°C to 285°C was much higher than in the case of the z-LLDPE polymer. This was supplied by the findings that the m-LLDPE polymer required higher power consumption under all extrusion conditions examined. It was fUliher revealed that the m-LLDPE undergoes a higher extent of melt fracture, the onset of which occurs under much lower shear rates than the Ziegler-based polymer and this was attributed to its higher shear viscosity and narrower molecular weight distribution (MWD). Melt flow measurements and GPC have shown that after the first extrusion pass, the initial narrower MWD of m-LLDPE is retained (compared to z-LLDPE), but upon further multiple extrusion passes it undergoes much faster broadening of its MWD which shifts to higher Mw polymer fractions, paliicularly at the high screw speeds. The MWD of z-LLDPE polymer on the other hand shifts towards the lower Mw end. All the evidence suggest therefore the m-LLDPE undergoes predominantly cross-linking reactions under all processing conditions whereas z-LLDPE undergoes both cross-linking and chain scission reactions with the latter occurring predominantly under more severe processing conditions (higher temperatures and screw speeds, 285°CI200rpm). The stabilisation of both polymers with synergistic combinations of a hindered phenol (Irganox 1076) and a phosphite (Weston 399) at low concentrations has shown a high extent of melt stabilisation in both polymers (extrusion temperatures 210-285°C and screw speeds 50-200rpm). The best Irganox 1076/Weston 399 system was found to be at an optimum 1:4 w/w ratio, respectively and was found to be most effective in the z-LLDPE polymer. The melt stabilising effectiveness of a Vitamin E/Ultranox 626 system used at a fraction of the total concentration of Irganox 1076/Weston 399 system was found to be higher in both polymers (under all extrusion conditions). It was found that AOs which operate primarily as alkyl (Re) radical scavengers are the most effective in inhibiting the thermal oxidative degradation of m-LLDPE in the melt; this polymer was shown to degrade in the melt primarily via alky radicals resulting in crosslinking. Metallocene polymers stabilised with single antioxidants of Irganox HP 136 (a lactone) and Irganox E201 (vitamin E) produced the highest extent of melt stability and the least discolouration during processing (260°C/1 OOrpm). Furthermore, synergistic combinations of Irganox HP I 36/Ultranox 626 (XP-60) system produced very high levels of melt and colour stability (comparable to the Vitamin E based systems) in the mLLDPE polymer. The addition of Irganox 1076 to an Irganox HP 136/Ultranox 626 system was found not to result in increasing melt stability but gave rise to increasing discolouration of the m-LLDPE polymer. The blending of a hydroxylamine (lrgastab FS042) with a lactone and Vitamin E (in combination with a phosphite) did not increase melt stability but induced severe discolouration of resultant polymer samples.
Resumo:
Organic Solar Cells (OSCs) represent a photovoltaic technology with multiple interesting application properties. However, the establishment of this technology into the market is subject to the achievement of operational lifetimes appropriate to their application purposes. Thus, comprehensive understanding of the degradation mechanisms occurring in OSCs is mandatory in both selecting more intrinsically stable components and/or device architectures and implementing strategies that mitigate the encountered stability issues. Inverted devices can suffer from mechanical stress and delamination at the interface between the active layer, e.g. poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM), and the hole transport layer, e.g. poly(3,4-ethylenedioxythiophene):poly(p-styrene sulfonate) (PEDOT:PSS). This work proposes the incorporation of a thin adhesive interlayer, consisting of a diblock copolymer composed of a P3HT block and a thermally-triggerable, alkyl-protected PSS block. In this context, the synthesis of poly(neopentyl p-styrene sulfonate) (PNSS) with controlled molar mass and low dispersity (Ð ≤ 1.50) via Reversible Addition-Fragmentation chain Transfer (RAFT) polymerisation has been extensively studied. Subsequently, Atomic Force Microscopy (AFM) was explored to characterise the thermal deprotection of P3HT-b-PNSS thin layers to yield amphiphilic P3HT-b-PSS, indicating that surface deprotection prior to thermal treatment could occur. Finally, structural variation of the alkyl protecting group in PSS allowed reducing the thermal treatment duration from 3 hours (P3HT-b-PNSS) to 45 minutes for the poly(isobutyl p-styrene sulfonate) (PiBSS) analogous copolymer. Another critical issue regarding the stability of OSCs is the sunlight-driven chemical degradation of the active layer. In the study herein, the combination of experimental techniques and theoretical calculations has allowed identification of the structural weaknesses of poly[(4,4’- bis(2-ethylhexyl) dithieno [3,2-b:2’,3’-d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5’-diyl], Si-PCPDTBT, upon photochemical treatment in air. Additionally, the study of the relative photodegradation rates in air of a series of polymers with systematically modified backbones and/or alkyl side chains has shown no direct correlation between chemical structure and stability. It is proposed instead that photostability is highly dependent on the crystalline character of the deposited films. Furthermore, it was verified that photostability of blends based on these polymers is dictated by the (de)stabilising effect that [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) has over each polymer. Finally, a multiscale analysis on the degradation of solar cells based on poly[4,4' bis(2- ethylhexyl) dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-[2,5 bis(3 tetradecylthiophen 2-yl)thiazole[5,4-d]thiazole)-1,8-diyl] and PCBM, indicated that by judicious selection of device layers, architectures, and encapsulation materials, operational lifetimes up to 3.3 years with no efficiency losses can be successfully achieved.
Resumo:
In this thesis, a TCAD approach for the investigation of charge transport in amorphous silicon dioxide is presented for the first time. The proposed approach is used to investigate high-voltage silicon oxide thick TEOS capacitors embedded in the back-end inter-level dielectric layers for galvanic insulation applications. In the first part of this thesis, a detailed review of the main physical and chemical properties of silicon dioxide and the main physical models for the description of charge transport in insulators are presented. In the second part, the characterization of high-voltage MIM structures at different high-field stress conditions up to the breakdown is presented. The main physical mechanisms responsible of the observed results are then discussed in details. The third part is dedicated to the implementation of a TCAD approach capable of describing charge transport in silicon dioxide layers in order to gain insight into the microscopic physical mechanisms responsible of the leakage current in MIM structures. In particular, I investigated and modeled the role of charge injection at contacts and charge build-up due to trapping and de-trapping mechanisms in the oxide layer to the purpose of understanding its behavior under DC and AC stress conditions. In addition, oxide breakdown due to impact-ionization of carriers has been taken into account in order to have a complete representation of the oxide behavior at very high fields. Numerical simulations have been compared against experiments to quantitatively validate the proposed approach. In the last part of the thesis, the proposed approach has been applied to simulate the breakdown in realistic structures under different stress conditions. The TCAD tool has been used to carry out a detailed analysis of the most relevant physical quantities, in order to gain a detailed understanding on the main mechanisms responsible for breakdown and guide design optimization.
Resumo:
Much has been talking about the advantages of polymeric nanocomposites, but little is known about the influence of nanoparticles on the stability of these materials. In this sense, we studied the influence of both oxides of zirconium and titanium, known to have photocatalytic properties, as well as the influence of synthetic clay Laponite on the photodegradation of styrene-butadiene rubber (SBR). SBR nanocomposites were prepared by the colloidal route by mixing commercial polymer lattices and nanometric anatase TiO2, monoclinic ZrO2 or exfoliated Laponite clays colloidal suspensions. To better understand the degradation mechanisms that occur in these nanocomposites, the efficiency of different photocatalysts under ultraviolet radiation was monitored by FT-IR and UV-vis spectroscopies and by differential scanning calorimetric. It was observed that TiO2 and ZrO2 nanoparticles undoubtedly acted as catalysts during the photodegradation process with different efficiencies and rates. However, when compared to pure SBR samples, the polymer degradation mechanism was unaffected. Unlike studies with nanocomposites montmorillonite, exfoliated laponite clay effectively acts as a photostabilizer of polymer UV photodegradation. Copyright © 2012 Wiley Periodicals, Inc.
Resumo:
Thesis (Master's)--University of Washington, 2016-06
Resumo:
The isoprene degradation mechanism included in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated and refined, using the Statewide Air Pollution Research Center (SAPRC) environmental chamber datasets on the photo-oxidation of isoprene and its degradation products, methacrolein (MACR) and methylvinyl ketone (MVK). Prior to this, the MCM v3 butane degradation chemistry was also evaluated using chamber data on the photo-oxidation of butane, and its degradation products, methylethyl ketone (MEK), acetaldehyde (CH3CHO) and formaldehyde (HCHO), in conjunction with an initial evaluation of the chamber-dependent auxiliary mechanisms for the series of relevant chambers. The MCM v3 mechanisms for both isoprene and butane generally performed well and were found to provide an acceptable reaction framework for describing the NOx-photo-oxidation experiments on the above systems, although a number of parameter modifications and refinements were identified which resulted in an improved performance. All these relate to the magnitude of sources of free radicals from organic chemical process, such as carbonyl photolysis rates and the yields of radicals from the reactions of O3 with unsaturated oxygenates, and specific recommendations are made for refinements. In addition to this, it was necessary to include a representation of the reactions of O(3P) with isoprene, MACR and MVK (which were not previously treated in MCM v3), and conclusions are drawn concerning the required extent of free radical formation from these reactions. Throughout the study, the performance of MCM v3 was also compared with that of the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.
Resumo:
The representation of alkene degradation in version 3 of the Master Chemical Mechanism (MCM v3) has been evaluated, using environmental chamber data on the photo-oxidation of ethene, propene, 1-butene and 1-hexene in the presence of NOx, from up to five chambers at the Statewide Air Pollution Research Center (SAPRC) at the University of California. As part of this evaluation, it was necessary to include a representation of the reactions of the alkenes with O(3P), which are significant under chamber conditions but generally insignificant under atmospheric conditions. The simulations for the ethene and propene systems, in particular, were found to be sensitive to the branching ratios assigned to molecular and free radical forming pathways of the O(3P) reactions, with the extent of radical formation required for proper fitting of the model to the chamber data being substantially lower than the reported consensus. With this constraint, the MCM v3 mechanisms for ethene and propene generally performed well. The sensitivity of the simulations to the parameters applied to a series of other radical sources and sink reactions (radical formation from the alkene ozonolysis reactions and product carbonyl photolysis; radical removal from the reaction of OH with NO2 and β-hydroxynitrate formation) were also considered, and the implications of these results are discussed. Evaluation of the MCM v3 1-butene and 1-hexene degradation mechanisms, using a more limited dataset from only one chamber, was found to be inconclusive. The results of sensitivity studies demonstrate that it is impossible to reconcile the simulated and observed formation of ozone in these systems for ranges of parameter values which can currently be justified on the basis of the literature. As a result of this work, gaps and uncertainties in the kinetic, mechanistic and chamber database are identified and discussed, in relation to both tropospheric chemistry and chemistry important under chamber conditions which may compromise the evaluation procedure, and recommendations are made for future experimental studies. Throughout the study, the performance of the MCM v3 chemistry was also simultaneously compared with that of the corresponding chemistry in the SAPRC-99 mechanism, which was developed and optimized in conjunction with the chamber datasets.
Resumo:
High temperature gas nitrided AISI 304L austenitic stainless steel containing 0.55 wt% N in solid solution, was corrosion, erosion and corrosion-erosion tested in a jet-like device, using slurry composed of 3.5% NaCl and quartz particles. Scanning electron microscopy analysis of the damaged surfaces, mass loss measurements and electrochemical test results were used to understand the effect of nitrogen on the degradation mechanisms. Increasing the nitrogen content improved the corrosion, erosion and corrosion-erosion resistance of the AISI 304L austenitic stainless steel. Smoother wear mark contours observed on the nitrided surfaces indicate a positive effect of nitrogen on the reduction of the corrosion-erosion synergism. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this work, the behavior of an AISI 410 martensitic stainless steel under corrosion-erosion conditions is evaluated. Quenched and tempered samples were used for the wear test, using a low velocity jet-like device connected to a potentiostat. Potentiodynamic polarization curves were obtained with the electrolyte in static state, with flow conditions and under corrosion-erosion, adding quartz particles to the electrolyte. In addition, mass loss measurements under erosion and corrosion-erosion conditions were carried out. The topography of the surfaces was examined after the wear tests, using optical and scanning electron microscopy. This information, together with the results of mass losses and the electrochemical tests were used to establish the degradation mechanisms of the stainless steels under different testing conditions. The results showed that synergism is a significant part of the degradation process of this steel (66.5%) and that the mass removal process of steel was controlled by corrosion assisted by erosion.
Resumo:
The behavior of Pt/C and Pt-RuO(x)/C electrodes subjected to a larger number of potential scans and constant potential for prolonged time periods was investigated in the absence and presence of methanol. The structural changes were analyzed on the basis of the modifications observed in the X-ray diffraction pattern of the catalysts. Carbon monoxide stripping experiments were performed before and after the potential scans, thus enabling analysis of the behavior of the electrochemically active surface area. The resulting solutions were examined by inductively coupled plasma mass spectrometry (ICP-MS). There was reduction in the electrochemically active surface area, as well as increase in crystallite size and dissolution of catalyst components after the potential scan tests. Catalyst degradation was more pronounced in the presence of methanol, and cyclic potential conditions accelerate the degradation mechanisms. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
Resumo:
O âmbito desta dissertação centra-se na temática de estudos de durabilidade do betão auto-compactavel (BAC), cujo cálculo dos constituintes foi feito pelo método de Nepomuceno. Sobre amostras de 40, 55 e 70 MPa, produzidas segundo o método atrás identificado, foram feitos estudos químicos e morfológicos, de propriedades de transporte de mecanismos de degradação e de propriedades indirectas. Os três provetes em estudo de 40, 55 e 70 MPa, apresentam características satisfatórias a nível da microestrutura, propriedades de transporte, carbonatação, penetração de cloretos e análise de ultra-sons. Numa análise comparativa entre as três resistências mecânicas em estudo, verifica-se que as propriedades de durabilidade vão melhorando a medida que a resistência mecânica também aumenta, ou seja, os provete com 70 MPa apresentam as melhores características a nível de durabilidade e os de 40 as piores; os de 55 apresentam propriedades intermédias.