974 resultados para deep-sea channel


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on more than 4000 km 2D seismic data and seismic stratigraphic analysis, we discussed the extent and formation mechanism of the Qiongdongnan deep sea channel. The Qiongdongnan deep sea channel is a large incised channel which extends from the east boundary of the Yinggehai Basin, through the whole Qiongdongnan and the Xisha trough, and terminates in the western part of the northwest subbasin of South China Sea. It is more than 570 km long and 4-8 km wide. The chaotic (or continuous) middle (or high) amplitude, middle (or high) continuity seismic facies of the channel reflect the different lithological distribution of the channel. The channel formed as a complex result of global sea level drop during early Pliocene, large scale of sediment supply to the Yinggehai Basin, inversion event of the Red River strike-slip fault, and tilted direction of the Qiongdongnan Basin. The large scale of sediment supply from Red River caused the shelf break of the Yinggehai Basin to move torwards the S and SE direction and developed large scale of prograding wedge from the Miocene, and the inversion of the Red River strike-slip fault induced the sediment slump which formed the Qiongdongnan deep sea channel.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Zenisu deep-sea channel originates on the Izu-Ogasawara island arc, and disappears in the Shikoku Basin of the Philippine Sea. The geomorphology, sedimentary processes, and the development of the Zenisu deep-sea channel were investigated on the basis of swath bathymetry, side-scan sonar imagery, submersible observations, and seismic data. The deep-sea channel can be divided into three segments according to the downslope gradient and channel orientation. They are the Zenisu Canyon, the E-W fan channel, and the trough-axis channel. The sediment fill is characterized by turbidite and debrite deposition and blocky-hummocky avalanche deposits on the flanks of the Zenisu Ridge. In the Zenisu Canyon and the Zenisu deep-sea channel, sediment transport by turbidity currents generates sediment waves (dunes) observed during the Shinkai 6500 dive 371. The development of the Zenisu Canyon is controlled by a N-S shear fault, whereas the trough-axis channel is controlled by basin subsidence associated with the Zenisu Ridge. The E-W fan channel was probably affected by the E-W fault and the basement morphology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zenisu deep-sea channel originated from a volcanic arc region, Izu-Ogasawara Island Arc, and vanished in the Shikoku Basin of the Philippine Sea. According to the swath bathymetry, the deep-sea channel can be divided into three,segments. They are Zenisu canyon, E-W fan channel and trough-axis channel. A lot of volcanic detritus were deposited in the Zenisu Trough via the deep-sea channel because it originated from volcanic arc settings. On the basis of the swath bathymetry, submersible and seismic reflection data, the deposits are characterized by turbidite and debrite deposits as those in the other major deep-sea channels. Erosion or few sediments were observed in the Zenisu canyon, whereas a lot of turbidites and debrites occurred in the E-W channel and trough axis channel. Cold seep communities, active fault and fluid flow were discovered along the lower slope of the Zenisu Ridge. Vertical sedimentary sequences in the Zenisu Trough consist of the four post-rift sequence units of the Shikoku Basin, among which Units A and B are two turbidite units. The development of Zenisu canyon is controlled by the N-S shear fault, the E-W fan channel is related to the E-W shear fault, and the trough-axis channel is related to the subsidence of central basin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Columbia Channel (CCS) system is a depositional system located in the South Brazilian Basin, south of the Vitoria-Trindade volcanic chain. It lies in a WNW-ESE direction on the continental rise and abyssal plain, at a depth of between 4200 and 5200 m. It is formed by two depocenters elongated respectively south and north of the channel that show different sediment patterns. The area is swept by a deep western boundary current formed by AABW. The system has been previously interpreted has a mixed turbidite-contourite system. More detailed study of seismic data permits a more precise definition of the modern channel morphology, the system stratigraphy as well as the sedimentary processes and control. The modern CCS presents active erosion and/or transport along the channel. The ancient Oligo-Neogene system overlies a ""upper Cretaceous-Paleogene"" sedimentary substratum (Unit U1) bounded at the top by a major erosive ""late Eocene-early Oligocene"" discordance (D2). This ancient system is subdivided into 2 seismic units (U2 and U3). The thick basal U2 unit constitutes the larger part of the system. It consists of three subunits bounded by unconformities: D3 (""Oligocene-Miocene boundary""), D4 (""late Miocene"") and D5 (""late Pliocene""). The subunits have a fairly tabular geometry in the shallow NW depocenter associated with predominant turbidite deposits. They present a mounded shape in the deep NE depocenter, and are interpreted as forming a contourite drift. South of the channel, the deposits are interpreted as a contourite sheet drift. The surficial U3 unit forms a thin carpet of deposits. The beginning of the channel occurs at the end of U1 and during the formation of D2. Its location seems to have been determined by active faults. The channel has been active throughout the late Oligocene and Neogene and its depth increased continuously as a consequence of erosion of the channel floor and deposit aggradation along its margins. Such a mixed turbidite-contourite system (or fan drift) is characterized by frequent, rapid lateral facies variations and by unconformities that cross the whole system and are associated with increased AABW circulation. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several amino acid diagenetic reactions, which take place in the deep-sea sedimentary environment, were investigated, using various Deep Sea Drilling Project (DSDP) cores. Initially it was found that essentially all the amino acids in sediments are bound in peptide linkages; but, with increasing age, the peptide bonds undergo slow hydrolysis that results in an increasingly larger fraction of amino acids in the free state. The hydrolysis half-life in calcareous sediments was estimated to be ~1-2 million years, while in non-carbonate sediment the hydrolysis rate may be considerably slower. The amino acid compositions and the extent of racemization of several amino acids were determined in various fractions isolated from the sediments. These analyses demonstrated that the mechanism, kinetics, and rate of amino acid diagenesis are highly dependent upon the physical state (i.e., free, bound, etc.) in which the amino acids exist in the sedimentary environment. In the free state, serine and threonine were found to decompose primarily by a dehydration reaction, while in the bound state (residue or HCl-insoluble fraction) a reversible aldol-cleavage reaction is the main decomposition pathway of these amino acids. The change in amino acid composition of the residue fraction with time was suggested to be due to the hydrolysis of peptide bonds, while in foraminiferal tests the compositional changes over geological time are the result of various decomposition reactions. Reversible first-order racemization kinetics are not observed for free amino acids in sediments. The explanation for these anomalous kinetics involves a complex reaction series which includes the hydrolysis of peptide bonds and the very rapid racemization of free amino acids. The racemization rates of free amino acids in sediments were found to be many orders of magnitude faster than those predicted from elevated temperature experiments using free amino acids in aqueous solution. The racemization rate enhancement of free amino acids in sediments may be due to the catalysis of the reaction by trace metals. Reversible first-order kinetics are followed for amino acids in the residue fraction isolated from sediments; the rate of racemization in this fraction is slower than that predicted for protein-bound amino acids. Various applications of amino acid diagenetic reactions are discussed. Racemization and the decomposition reaction of serine and threonine can both be used, with certain limitations, to make rough age estimates of deep-sea sediments back to several million years. The extent of racemization in foraminiferal tests which have been dated by some other independent technique can be used to estimate geothermal gradients, and thus heat flows, and to evaluate the bottom water temperature history in certain oceanic areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Seventy four samples of DSDP recovered cherts of Jurassic to Miocene age from varying locations, and 27 samples of on-land exposed cherts were analyzed for the isotopic composition of their oxygen and hydrogen. These studies were accompanied by mineralogical analyses and some isotopic analyses of the coexisting carbonates. d18O of chert ranges between 27 and 39%. relative to SMOW, d18O of porcellanite - between 30 and 42%. The consistent enrichment of opal-CT in porcellanites in 18O with respect to coexisting microcrystalline quartz in chert is probably a reflection of a different temperature (depth) of diagenesis of the two phases. d18O of deep sea cherts generally decrease with increasing age, indicating an overall cpoling of the ocean bottom during the last 150 m.y. A comparison of this trend with that recorded by benthonic foraminifera (Douglas and Savin, 1975; http://www.deepseadrilling.org/32/volume/dsdp32_15.pdf) indicates the possibility of d18O in deep sea cherts not being frozen in until several tens of millions of years after deposition. Cherts of any Age show a spread of d18O values, increasing diagenesis being reflected in a lowering of d18O. Drusy quartz has the lowest d18O values. On-land exposed cherts are consistently depleted in 18O in comparison to their deep sea time equivalent cherts. Water extracted from deep sea cherts ranges between 0.5 and 1.4 wt %. dD of this water ranges between -78 and -95%. and is not a function of d18O of the cherts (or the temperature of their formation).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On Leg 96 of the Deep Sea Drilling Project (DSDP), holes were drilled in Orca and Pigmy basins on the northern Gulf of Mexico continental slope and on the Mississippi Fan. The holes on the fan encountered interbedded sand, silt, and mud deposited extremely rapidly, most during late Wisconsin glacial time. Pore-water chemistry in these holes is variable, but does not follow lithologic changes in any simple way. Both Ca and SO4 are enriched in the pore water of many samples from the fan. Two sites drilled in the prominent central channel of the middle fan show rapid SO4 reduction with depth, whereas two nearby sites in overbank deposits show no sulfate reduction for 300 m. Calcium concentration decreases as SO4 is depleted and Li follows the same pattern. Strontium, which like Li, is enriched in samples enriched in Ca, does not decrease with SO4 and Ca. Potassium in the pore water decreases with depth at almost all sites. Sulfate reduction was active at the two basin sites and, as on the fan, this resulted in calcium carbonate precipitation and a lowering of pore water Ca, Mg, and Li. The Orca Basin site was drilled through a brine pool of 258? salinity. Pore-water salinity decreases smoothly with depth to 50 m and remains well above normal seawater values to the bottom of the hole at about 90 m. This suggests constant sedimentation under anoxic hypersaline conditions for at least the last 50,000 yr.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The stratigraphic architecture of deep sea depositional systems has been discussed in detail. Some examples in Ischia and Stromboli volcanic islands (Southern Tyrrhenian sea, Italy) are here shown and discussed. The submarine slope and base of slope depositional systems represent a major component of marine and lacustrine basin fills, constituting primary targets for hydrocarbon exploration and development. The slope systems are characterized by seven seismic facies building blocks, including the turbiditic channel fills, the turbidite lobes, the sheet turbidites, the slide, slump and debris flow sheets, lobes and tongues, the fine-grained turbidite fills and sheets, the contourite drifts and finally, the hemipelagic drapes and fills. Sparker profiles offshore Ischia are presented. New seismo-stratigraphic evidence on buried volcanic structures and overlying Quaternary deposits of the eastern offshore of the Ischia Island are here discussed to highlight the implications on marine geophysics and volcanology. Regional seismic sections in the Ischia offshore across buried volcanic structures and debris avalanche and debris flow deposits are here presented and discussed. Deep sea depositional systems in the Ischia Island are well developed in correspondence to the Southern Ischia canyon system. The canyon system engraves a narrow continental shelf from Punta Imperatore to Punta San Pancrazio, being limited southwestwards from the relict volcanic edifice of the Ischia bank. While the eastern boundary of the canyon system is controlled by extensional tectonics, being limited from a NE-SW trending (counter-Apenninic) normal fault, its western boundary is controlled by volcanism, due to the growth of the Ischia volcanic bank. Submarine gravitational instabilities also acted in relationships to the canyon system, allowing for the individuation of large scale creeping at the sea bottom and hummocky deposits already interpreted as debris avalanche deposits. High resolution seismic data (Subbottom Chirp) coupled to high resolution Multibeam bathymetry collected in the frame of the Stromboli geophysical experiment aimed at recording seismic active data and tomography of the Stromboli Island are here presented. A new detailed swath bathymetry of Stromboli Island is here shown and discussed to reconstruct an up-to-date morpho-bathymetry and marine geology of the area, compared to volcanologic setting of the Aeolian volcanic complex. The Stromboli DEM gives information about the submerged structure of the volcano, particularly about the volcano-tectonic and gravitational processes involving the submarine flanks of the edifice. Several seismic units have been identified around the volcanic edifice and interpreted as volcanic acoustic basement pertaining to the volcano and overlying slide chaotic bodies emplaced during its complex volcano-tectonic evolution. They are related to the eruptive activity of Stromboli, mainly poliphasic and to regional geological processes involving the geology of the Aeolian Arc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Habitat mapping and characterization has been defined as a high-priority management issue for the Olympic Coast National Marine Sanctuary (OCNMS), especially for poorly known deep-sea habitats that may be sensitive to anthropogenic disturbance. As a result, a team of scientists from OCNMS, National Centers for Coastal Ocean Science (NCCOS), and other partnering institutions initiated a series of surveys to assess the distribution of deep-sea coral/sponge assemblages within the sanctuary and to look for evidence of potential anthropogenic impacts in these critical habitats. Initial results indicated that remotely delineating areas of hard bottom substrate through acoustic sensing could be a useful tool to increase the efficiency and success of subsequent ROV-based surveys of the associated deep-sea fauna. Accordingly, side scan sonar surveys were conducted in May 2004, June 2005, and April 2006 aboard the NOAA Ship McArthur II to: (1) obtain additional imagery of the seafloor for broader habitat-mapping coverage of sanctuary waters, and (2) help delineate suitable deep-sea coral/sponge habitat, in areas of both high and low commercial-fishing activities, to serve as sites for surveying-in more detail using an ROV on subsequent cruises. Several regions of the sea floor throughout the OCNMS were surveyed and mosaicked at 1-meter pixel resolution. Imagery from the side scan sonar mapping efforts was integrated with other complementary data from a towed camera sled, ROVs, sedimentary samples, and bathymetry records to describe geological and biological (where possible) aspects of habitat. Using a hierarchical deep-water marine benthic classification scheme (Greene et al. 1999), we created a preliminary map of various habitat polygon features for use in a geographical information system (GIS). This report provides a description of the mapping and groundtruthing efforts as well as results of the image classification procedure for each of the areas surveyed. (PDF contains 60 pages.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

11 specimens of Coryphaenoides armatus were collected at former dumping sites for radioactive material in the Iberian deep sea at a depth of 4700 m and their muscle tissue was analysed for four trace elements (copper, zinc, cadmium and lead) by differential pulse anodic stripping voltammetry (DPSAV). Concentrations of zinc were typical for fish muscle in general; copper content was somewhat higher than generally found in fish. The cadmium and lead contents were at a level found in fish from the open sea but the lead content of 2 specimens taken in area East-B was found to be higher.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The configuration of semisubmersibles consisting of pontoons and columns and their corresponding heave motion response in incident progressive waves are examined. The purpose of the present study is to provide a theoretical approach to estimating the effects of volumetric allocation on natural period and response amplitude operator (RAO) in heave motion. We conclude that the amplitude of heave motion response can be considerably suppressed by appropriately adjusting volumetric allocation so that the natural heave period keeps away from the range of wave energy. The theoretical formulae are found in good agreement with the corresponding computational results by WAMIT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A portion of the Oculina Bank located off eastern Florida is a marine protected area (MPA) preserved for its dense populations of the ivory tree coral (Oculina varicosa), which provides important habitat for fish. Surveys of fish assemblages and benthic habitat were conducted inside and outside the MPA in 2003 and 2005 by using remotely operated vehicle video transects and digital still imagery. Fish species composition, biodiversity, and grouper densities were used to determine whether O. varicosa forms an essential habitat compared to other structure-forming habitats and to examine the effectiveness of the MPA. Multivariate analyses indicated no differences in fish assemblages or biodiversity among hardbottom habitat types and grouper densities were highest among the most complex habitats; however the higher densities were not exclusive to coral habitat. Therefore, we conclude that O. varicosa was functionally equivalent to other hardbottom habitats. Even though fish assemblages were not different among management areas, biodiversity and grouper densities were higher inside the MPA compared to outside. The percentage of intact coral was also higher inside the MPA. These results provide initial evidence demonstrating effectiveness of the MPA for restoring reef fish and their habitat. This is the first study to compare reef fish populations on O. varicosa with other structure-forming reef habitats and also the first to examine the effectiveness of the MPA for restoring fish populations and live reef cover.