963 resultados para decomposition bags
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
This material is based upon work supported by the National Science Foundation through the Florida Coastal Everglades Long-Term Ecological Research program under Cooperative Agreements #DBI-0620409 and #DEB-9910514. This image is made available for non-commercial or educational use only.
Resumo:
Dry mass, nitrogen and phosphorus content in belowground litter of four emergent macrophytes (Typha glauca Godr., Phragmites australis (Cav.) Trin., Scolochloa festucacea (Willd.) Link and Scirpus lacustris L.) were followed for 1.2 years in a series of experimental marshes, Delta Marsh, Manitoba. Litter bags containing roots and rhizome materials of each species were buried in unflooded soil, or soil flooded at three water depths (1–30, 31–60, > 60 cm). There were few differences in dry mass loss in unflooded or flooded soils, and depth of flooding also had little effect on decomposition rates. In the flooded sites, Scolochloa and Phragmites roots lost more mass (48.9–63.8% and 59.2–85.5%, respectively) after 112 days than Typha and Scirpus (36.3–43.6 and 37.0–47.2%, respectively). These differences continued through to the end of the study, except in the shallow sites where Scirpus roots lost more mass and had comparable mass remaining as Scolochloa and Phragmites. In the unflooded sites, there was little difference between species. All litters lost nitrogen (22.9–90.0%) and phosphorus (46.3–92.7%) during the first 112 days, then levels tended to remain constant. Decay rates for our belowground root and rhizome litters were comparable to published literature values for aboveground shoot litter of the same species, except for Phragmites roots and rhizomes which decomposed at a faster rate (−k = 0.0014−0.0032) than shoots (−k = 0.0003−0.0007, [van der Valk, A.G., Rhymer, J.M., Murkin, H.R., 1991. Flooding and the decomposition of litter of four emergent plant species in a prairie wetland. Wetlands 11, 1–16]).
Resumo:
The purpose of this study was to determine the effect of increased soil moisture levels on
the decomposition processes in a peat-extracted bog. Field experiments, in which soil
moisture levels were manipulated, were conducted using 320 microcosms in the
Wainfleet Bog from May 2002 to November 2004. Decomposition was measured using
litter bags and monitoring the abundance of macro invertebrate decomposers known as
Collembola. Litter bags containing wooden toothpicks (n=2240), filter paper (n=480)
and Betula pendula leaves (n=40) were buried in the soil and removed at regular time
intervals up to one year. The results of the litter bag studies demonstrated a significant
reduction of the decomposition of toothpicks (p<0.001), filter paper (p<0.001), and
Betula pendula leaves (p
Resumo:
A primary objective of agri-environment schemes is the conservation of biodiversity; in addition to increasing the value of farmland for wildlife, these schemes also aim to restore natural ecosystem functioning. The management of scheme options can influence their value for delivering ecosystem services by modifying the composition of floral and faunal communities. This study examines the impact of an agri-environment scheme prescription on ecosystem functioning by testing the hypothesis that vegetation management influences decomposition rates in grassy arable field margins. The effects of two vegetation management practices in arable field margins - cutting and soil disturbance (scarification) - on litter decomposition were compared using a litterbag experimental approach in early April 2006. Bags had either small mesh designed to restrict access to soil macrofauna, or large mesh that would allow macrofauna to enter. Bags were positioned on the soil surface or inserted into the soil in cut and scarified margins, retrieved after 44, 103 and 250 days and the amount of litter mass remaining was calculated. Litter loss from the litterbags with large mesh was greater than from the small mesh bags, providing evidence that soil macrofauna accelerate rates of litter decomposition. In the large mesh bags, the proportion of litter remaining in bags above and belowground in the cut plots was similar, while in the scarified plots, there was significantly more litter left in the aboveground bags than in the belowground bags. This loss of balance between decomposition rates above and belowground in scarified margins may have implications for the development and maintenance of grassy arable field margins by influencing nutrient availability for plant communities. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This study evaluated the decomposition process of leaf litter from the main Brazilian mangrove species Avicennia schaueriana, Laguncularia racemosa and Rhizophora mangle. Senescent leaves were collected, dried and placed in nylon bags with different mesh sizes (fine: 2x2mm and coarse: 8x8mm). The bags were distributed over the sediment, and replicates of each species and mesh size were collected periodically over 4months. In the laboratory, the dry weight of the samples was measured, and the decomposition coefficient (k) for each species and mesh size was obtained over time. All species showed a rapid decomposition rate at the beginning of the experiment, followed by a slower but steady rate of decomposition over time. The rate of leaf litter decomposition was highest in A. schaueriana, intermediate in L. racemosa and lowest in R. mangle. The difference was mainly linked to the activity and abundance of detritivores, together with the different litter quality of the species, which determined their palatability and probably influenced the decomposition process.
Resumo:
Restinga (sandbank) areas are fragile environments, which have been subjected to anthropogenic pressures since the country colonization. So that mitigate actions can be taken, it must be developed studies to better understand the ecological processes in these environments. Thus, this study aims to quantify litter and nutrients devolution and litter decomposition in a periodically flooded forest in 'Restinga da Marambaia', Rio de Janeiro. In the study area 10 conic collectors and 30 litter bags were installed. The annual litter devolution was 7.64 Mg.ha(-1), and September was the highest contribution month. Nitrogen was the element returned to the soil to a higher amount (71.9 kg ha(-1) yr(-1)), followed by potassium (41.1 kg ha(-1) yr(-1)). Litter decomposition rate 0.0015 g g(-1) day(-1) and the half-life were 462 days. Potassium was the element that showed the highest losses in comparison to the others. Cellulose appeared as a major participant in the structure of leaf litter, followed by lignin, the latter being associated with the leathery texture of the leaves in this formation.
Resumo:
Crop residues returned to the soil are important to preserve fertility and sustainability. This research addressed the long-term decomposition of sugarcane post-harvest residues (trash) under reduced tillage, therefore field renewal was performed with herbicide followed by subsoiling and ratoons were deprived of interrow scarification. The trial was conducted in the northern Sao Paulo State, Brazil during four consecutive crops (2005-2008) where litter bags containing N-15-labeled trash were disposed in the field attempting to simulate two distinct situations: the previous crop trash (PCT) or residues incorporated in the field after tillage, and post-harvest trash (PHT) or the remains of plant-cane harvest. Decomposition rates regarding dry matter (DM), carbon (C), root growth, plant nutrients (N, P, K, Ca, Mg and S), lignin (LIG) cellulose (CEL) and hemicellulose (HCEL) contents were assessed for PCT (2005 ndash;2008) and for PHT (2006-2008). There were significant reductions on DM and C:N ratio due to C losses and root growth within the litter bags over time. The DM from PCT and PHT decreased 96% and 73% after four and three crops, respectively, and the higher nutrients release were found for K, Ca and N. The LIG, CEL and HCEL concentrations in PCT decreased 60%, 29%, 70% after four crops and 47%, 35%, 70% from PHT after three crops, respectively. Trash decomposition was driven mainly by residues biochemical composition, root growth within the trash blanket and the climatic conditions during the crop cycles. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Decomposition rates and N release patterns of turfgrass clippings from lawns are not well understood. Litter bags containing clippings were inserted into the thatch layer of a coolseason turf. The experiment was arranged as a 2 × 4 factorial in a randomized complete block design with three replicates. Treatments included four rates of N fertilizer (0, 98, 196, and 392 kg N ha-1 yr-1) and two clipping treatments (returned vs. removed). Litter bags were removed periodically over the growing season and samples were analyzed for biomass, N and C concentrations, and C:N ratio on an ash-free basis. Percentage N loss from the clippings after 16 weeks ranged from 88% to 93% at the 0 and 392 kg N ha-1 rates, respectively, and from 86% to 94% when clippings were removed (CRM) or returned (CRT), respectively. Percentage C loss from the clippings ranged from 94% to 95% at the 0 and 392 kg N ha-1 rates, respectively, and from 92% to 96% with CRM and CRT, respectively. Cumulative N release was similar across N fertilization rates, (ranging from 131 g N kg-1 to 135 g N kg-1 tissue) but was higher for CRT (151 g N kg-1 tissue) than for CRM (128 g N kg-1 tissue). Grass clippings decomposed rapidly and released N quickly when returned to the turf thatch layer. This indicates the potential for reduced N fertilization when clippings are returned. Such rapid decomposition also suggests that the contribution of grass clippings to thatch development is negligible.
Resumo:
Mangrove root decomposition rates were measured by distributing mesh bags containing fine root material across six sites with different soil fertility and hydroperiod to compare ambient differences to substrate quality. Roots from a site with lower soil phosphorus concentration were used as a reference and compared to ambient roots at five other sites with increased phosphorus concentration. Four mesh bags of each root type (ambient versus reference), separated into four 10-cm replicate intervals, were buried up to 42 cm depth at each site and incubated for 250 d (initiation in May 2004). Mass loss of ambient mangrove roots was significant at all study sites and ranged from 17% to 54%; there was no significant difference with depth at any one site. Reference decomposition constants (−k) ranged from 0.0012 to 0.0018 d−1 among Taylor Slough sites compared to 0.0023–0.0028 d−1 among Shark River sites, indicating slower decomposition rates associated with lower soil phosphorous and longer flood duration. Reference roots had similar decomposition rates as ambient roots in four of the six sites, and there were no significant correlations between indices of root substrate quality and decomposition rates. Among these distinct landscape gradients of south Florida mangroves, soil environmental conditions have a greater effect on belowground root decomposition than root substrate quality.
Resumo:
Clomazone (2-(2-chlorophenyl) methyl-4.4-dimethyl-3-isoxazolidinone) is a post emergence herbicide widely used in rice fields in Rio Grande do Sul (Brazil) with high activity against Gramineae at the recommended application rate of 700 g/ha. The presence of this chemical in the water may affect microorganisms responsible for the decomposition of organic matter. Thus, a disturbe in the trophic chain sustained by the decompositors could happen. In the present work the decomposition rate of organic matter (Typha latifolia) exposed to several concentrations of a clomazone formulation: 0 (control), 25.0, 62.0, 156.0, 390.0 and 976.0mg/L on the basis of the active ingredient was evaluated. Five litter bags containing about 3.0g of pieces of T. latifolia leaves wereplaced in aquariums with 15 of reconstituted water. In cach aquarium were added 500g of sediment from the same place of the plant collection, as a source of decompositors microorganisms. The results relative tothe control, showed that the decomposition rate in the highest and lowest dose was reduced in 50.05 and 1,28%, respectively, after 80 days.
Resumo:
The morphological and chemical changes occurring during the thermal decomposition of weddelite, CaC2O4·2H2O, have been followed in real time in a heating stage attached to an Environmental Scanning Electron Microscope operating at a pressure of 2 Torr, with a heating rate of 10 °C/min and an equilibration time of approximately 10 min. The dehydration step around 120 °C and the loss of CO around 425 °C do not involve changes in morphology, but changes in the composition were observed. The final reaction of CaCO3 to CaO while evolving CO2 around 600 °C involved the formation of chains of very small oxide particles pseudomorphic to the original oxalate crystals. The change in chemical composition could only be observed after cooling the sample to 350 °C because of the effects of thermal radiation.