51 resultados para deamination
Resumo:
L-Amino acid oxidases (LAAOs, EC 1.4.3.2) are flavoenzymes that catalyze the stereospecific oxidative deamination of an L-amino acid substrate to the corresponding a-ketoacid with hydrogen peroxide and ammonia production. The present work describes the first report on the antiviral (Dengue virus) and antiprotozoal (trypanocidal and leishmanicide) activities of a Bothrops jararaca L-amino acid oxidase (BjarLAAO-I) and identify its cDNA sequence. Antiparasite effects were inhibited by catalase, suggesting that they are mediated by H(2)O(2) production. Cells infected with DENV-3 virus previously treated with BjarLAAO-I, showed a decrease in viral titer (13-83-fold) when compared with cells infected with untreated viruses. Untreated and treated promastigotes (T. cruzi and L. amazonensis) were observed by transmission electron microscopy with different degrees of damage. Its complete cDNA sequence, with 1452 bp, encoded an open reading frame of 484 amino acid residues with a theoretical molecular weight and pl of 54,771.8 and 5.7, respectively. The cDNA-deduced amino acid sequence of BjarLAAO shows high identity to LAAOs from other snake venoms. Further investigations will be focused on the related molecular and functional correlation of these enzymes. Such a study should provide valuable information for the therapeutic development of new generations of microbicidal drugs. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Monoamine oxidase is a flavoenzyme bound to the mitochondrial outer membranes of the cells, which is responsible for the oxidative deamination of neurotransmitter and dietary amines. It has two distinct isozymic forms, designated MAO-A and MAO-B, each displaying different substrate and inhibitor specificities. They are the well-known targets for antidepressant, Parkinson`s disease, and neuroprotective drugs. Elucidation of the x-ray crystallographic structure of MAO-B has opened the way for the molecular modeling studies. In this work we have used molecular modeling, density functional theory with correlation, virtual screening, flexible docking, molecular dynamics, ADMET predictions, and molecular interaction field studies in order to design new molecules with potential higher selectivity and enzymatic inhibitory activity over MAO-B.
Resumo:
An L-amino acid oxidase (BjarLAAO-I) from Bothrops jararaca snake venom was highly purified using a stepwise sequential chromatography on Sephadex G-75, Benzamidine Sepharose and Phenyl Sepharose. Purified BjarLAAO-I showed a molecular weight around 60,000 under reducing conditions and about 125,000 in the native form, when analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration, respectively. BjarLAAO-I is a homodimeric acidic glycoprotein, pI similar to 5.0, and N-terminal sequence showing close structural homology with other snake venom LAAOs. The purified enzyme catalysed the oxidative deamination of L-amino acids, the most specific substrate being L-Phe. Five amino acids, L-Ser, L-Pro, L-Gly, L-Thr and L-Cys were not oxidized, clearly indicating a significant specificity. BjarLAAO-I significantly inhibited Ehrlich ascites tumour growth and induced an influx of polymorphonuclear cells, as well as spontaneous liberation of H(2)O(2) from peritoneal macrophages. Later, BjarLAAO-I induced mononuclear influx and peritoneal macrophage spreading. Animals treated with BjarLAAO-I showed higher survival time.
Resumo:
Published results on the inhibitory effects of small cosolutes on adenosine deamination by adenosine deaminase [Kurz. L. C.. Weitkamp, E., and Frieden, C. (1987) Biochemistry 26, 3027-3032; Dzingeleski, G., and Wolfenden, R. (1993) Biochemistry 32, 9143 -9147] have been reexamined. Results for sucrose, dioxane, methanol, and ethanol are shown to be qualitatively consistent with thermodynamic interpretation in terms of molecular crowding effects arising from the occurrence of a minor increase in enzyme volume and/or asymmetry during the kinetic reaction-a conformational transition that could be either preexisting or ligand induced. Direct evidence for the existence of the putative isomeric transition is provided by active enzyme gel chromatography on Sephadex G-100, which demonstrates a negative dependence of enzyme elution volume upon substrate concentration and is therefore consistent with substrate-mediated conformational changes that favor a larger (or more asymmetric) isomeric state of the enzyme. There are thus experimental grounds for adopting the present description of the inhibitory effects of unrelated cosolutes on the kinetics of adenosine deamination by adenosine deaminase in terms of thermodynamic nonideality.
Resumo:
The Phytomonas spp. are trypanosomatid parasites of plants. A polar glycolipid fraction of a Phytomonas sp., isolated from the plant Euphorbia characias and grown in culture, was fractionated into four major glycolipid species (Phy 1-4). The glycolipids were analysed by chemical and enzymic modifications, composition and methylation analyses, electrospray mass spectrometry and microsequencing after HNO2 deamination and NaB3H4 reduction. The water-soluble headgroup of the Phy2 glycolipid was also analysed by 1H NMR. All four glycolipids were shown to be glycoinositol-phospholipids (GIPLs) with phosphatidylinositol (PI) moieties containing the fully saturated alkylacylglycerol lipids 1-O-hexadecyl-2-O-palmitoylglycerol and 1-O-hexadecyl-2-O-stearoylglycerol. The structures of the Phy 1-4 GIPLs are: Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, Glc alpha 1-2(NH2-CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4GlcN alpha 1-6PI, [formula: see text] Glc alpha 1-2(NH2CH2CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2-CH2CH2-HPO4-)GlcN alpha 1-6PI [formula: see text] and Glc alpha 1-2Glc alpha 1-2(NH2CH2-CH2-HPO4-)Man alpha 1-2Man alpha 1-6Man alpha 1-4(NH2CH2CH2-HPO4-)-GlcN alpha 1-6PI. [formula: see text] The Phytomonas GIPLs represent a novel series of structures. This is the first description of the chemical structure of cell-surface molecules of this plant pathogen. The Phytomonas GIPLs are compared with those of other trypanosomatid parasites and are discussed with respect to trypanosomatid phylogenetic relationships.
Resumo:
Els isòtops estables com a traçadors de la cadena alimentària, s'han utilitzat per caracteritzar la relació entre els consumidors i els seus aliments, ja que el fraccionament isotòpic implica una discriminació en contra de certs isòtops. Però les anàlisis d'isòtops estables (SIA), també es poden dur a terme en peixos cultivats amb dietes artificials, com la orada (Sparus aurata), la especie más cultivada en el Mediterráneo. Canvis en l'abundància natural d'isòtops estables (13C i 15N) en els teixits i les seves reserves poden reflectir els canvis en l'ús i reciclatge dels nutrients ja que els enzims catabòlics implicats en els processos de descarboxilació i desaminació mostren una preferència pels isòtops més lleugers. Per tant, aquestes anàlisis ens poden proporcionar informació útil sobre l'estat nutricional i metabòlic dels peixos. L'objectiu d'aquest projecte va ser determinar la capacitat dels isòtops estables per ser utilitzats com a marcadors potencials de la capacitat de creixement i condicions de cria de l'orada. En aquest sentit, les anàlisis d'isòtops estables s'han combinat amb altres metabòlics (activitats citocrom-c-oxidasa, COX, i citrat sintasa, CS) i els paràmetres de creixement (ARN/ADN). El conjunt de resultats obtinguts en els diferents estudis realitzats en aquest projecte demostra que el SIA, en combinació amb altres paràmetres metabòlics, pot servir com una eina eficaç per discriminar els peixos amb millor potencial de creixement, així com a marcador sensible de l'estat nutricional i d'engreix. D'altra banda, la combinació de l'anàlisi d'isòtops estables amb les eines emergents, com ara tècniques de proteòmica (2D-PAGE), ens proporciona nous coneixements sobre els canvis metabòlics que ocorren en els músculs dels peixos durant l‟increment del creixement muscular induït per l'exercici.
Resumo:
BACKGROUND: APOBEC3G (apolipoprotein B mRNA-editing enzyme, catalytic polypeptide-like 3G) has antiretroviral activity associated with the hypermutation of viral DNA through cytosine deamination. APOBEC3G has two cytosine deaminase (CDA) domains; the catalytically inactive amino-terminal domain of APOBEC3G (N-CDA) carries the Vif interaction domain. There is no 3-D structure of APOBEC3G solved by X-ray or nuclear magnetic resonance. METHODOLOGY/PRINCIPAL FINDINGS: We predicted the structure of human APOBEC3G based on the crystal structure of APOBEC2. To assess the model structure, we evaluated 48 mutants of APOBEC3G N-CDA that identify novel variants altering DeltaVif HIV-1 infectivity and packaging of APOBEC3G. Results indicated that the key residue D128 is exposed at the surface of the model, with a negative local electrostatic potential. Mutation D128K changes the sign of that local potential. In addition, two novel functionally relevant residues that result in defective APOBEC3G encapsidation, R122 and W127, cluster at the surface. CONCLUSIONS/SIGNIFICANCE: The structure model identifies a cluster of residues important for packaging of APOBEC3G into virions, and may serve to guide functional analysis of APOBEC3G.
Resumo:
The peroxisome proliferator-activated receptor alpha is a ligand-activated transcription factor that plays an important role in the regulation of lipid homeostasis. PPARalpha mediates the effects of fibrates, which are potent hypolipidemic drugs, on gene expression. To better understand the biological effects of fibrates and PPARalpha, we searched for genes regulated by PPARalpha using oligonucleotide microarray and subtractive hybridization. By comparing liver RNA from wild-type and PPARalpha null mice, it was found that PPARalpha decreases the mRNA expression of enzymes involved in the metabolism of amino acids. Further analysis by Northern blot revealed that PPARalpha influences the expression of several genes involved in trans- and deamination of amino acids, and urea synthesis. Direct activation of PPARalpha using the synthetic PPARalpha ligand WY14643 decreased mRNA levels of these genes, suggesting that PPARalpha is directly implicated in the regulation of their expression. Consistent with these data, plasma urea concentrations are modulated by PPARalpha in vivo. It is concluded that in addition to oxidation of fatty acids, PPARalpha also regulates metabolism of amino acids in liver, indicating that PPARalpha is a key controller of intermediary metabolism during fasting.
Resumo:
Sensitive and specific methods based on gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) for the determination of levels of citalopram, desmethylcitalopram and didesmethylcitalopram in the plasma of patients treated with citalopram are presented, as well as a GC-MS procedure for the assay of the citalopram propionic acid derivative. After addition of a separate internal standard for each drug, liquid-solvent extraction is used to separate the basic compounds from the acid compounds. The demethylated amines are derivatized with trifluoroacetic anhydride, and the acid metabolite with methyl iodide. GC-MS is performed in the electron impact mode, as mass spectrometry by the (positive-ion) chemical ionization mode (methane and ammonia) appeared to be unsuitable. The limits of quantification were 1 ng/ml for citalopram and desmethylcitalopram and 2 ng/ml for the other metabolites. The correlation coefficients for the calibration curves (range 10-500 ng/ml) were > or = 0.999 for all compounds, whether determined by GC or GC-MS.
Resumo:
The neuronal effects of glucose deficiency on amino acid metabolism was studied on three-dimensional cultures of rat telencephalon neurones. Transient (6 h) exposure of differentiated cultures to low glucose (0.25 mm instead of 25 mm) caused irreversible damage, as judged by the marked decrease in the activities of two neurone-specific enzymes and lactate dehydrogenase, 1 week after the hypoglycemic insult. Quantification of amino acids and ammonia in the culture media supernatants indicated increased amino acid utilization and ammonia production during glucose-deficiency. Measurement of intracellular amino acids showed decreased levels of alanine, glutamine, glutamate and GABA, while aspartate was increased. Added lactate (11 mm) during glucose deficiency largely prevented the changes in amino acid metabolism and ammonia production, and attenuated irreversible damage. Higher media levels of glutamine (4 mm instead of 0.25 mm) during glucose deprivation prevented the decrease of intracellular glutamate and GABA, while it further increased intracellular aspartate, ammonia production and neuronal damage. Both lactate and glutamine were readily oxidized in these neuronal cultures. The present results suggest that in neurones, glucose deficiency enhances amino acid deamination at the expense of transamination reactions. This results in increased ammonia production and neuronal damage.
Resumo:
Sequence data from regions of five vertebrate vitellogenin genes were used to examine the frequency, distribution, and mutability of the dinucleotide CpG, the preferred modification site for eukaryotic DNA methyltransferases. The observed level of the CpG dinucleotide in all five genes was markedly lower than that expected from the known mononucleotide frequencies. CpG suppression was greater in introns than in exons. CpG-containing codons were found to be avoided in the vitellogenin genes, but not completely despite the redundancy of the genetic code. Frequency and distribution patterns of this dinucleotide varied dramatically among these otherwise closely related genes. Dense clusters of CpG dinucleotides tended to appear in regions of either functional or structural interest (e.g., in the transposon-like Vi-element of Xenopus) and these clusters contained 5-methylcytosine (5 mC). 5 mC is known to undergo deamination to form thymidine, but the extent to which this transition occurs in the heavily methylated genomes of vertebrates and its contribution to CpG suppression are still unclear. Sequence comparison of the methylated vitellogenin gene regions identified C----T and G----A substitutions that were found to occur at relatively high frequencies. The predicted products of CpG deamination, TpG and CpA, were elevated. These findings are consistent with the view that CpG distribution and methylation are interdependent and that deamination of 5 mC plays an important role in promoting evolutionary change at the nucleotide sequence level.
Resumo:
Reactive oxygen species can initiate carcinogenesis by virtue of their capacity to react with DNA and cause mutations. Recently, it has been suggested that nitric oxide (NO) and its derivatives produced in inflamed tissues could contribute to the carcinogenesis process. Genotoxicity of NO follows its reaction with oxygen and superoxide. It can be due either to direct DNA damage or indirect DNA damage. Direct damage includes DNA base deamination, peroxynitrite-induced adducts formation and single strand breaks in the DNA. Indirect damage is due to the interaction of NO reactive species with other molecules such as amines, thiols and lipids. The efficiency of one pathway or another might depend on the cellular antioxidant status or the presence of free metals.
Resumo:
Nitric oxide (NO) is a cellular messenger which is mutagenic in bacteria and human TK6 cells and induces deamination of 5-methylcytosine (5meC) residues in vitro. The aims of this study were: (i) to investigate whether NO induces 5meC deamination in codon 248 of the p53 gene in cultured human bronchial epithelial cells (BEAS-2B); and (ii) to compare NO mutagenicity to that of ethylnitrosourea (ENU), a strong mutagen. Two approaches were used: (i) a novel genotypic assay, using RFLP/PCR technology on purified exon VII sequence of the p53 gene; and (ii) a phenotypic (HPRT) mutation assay using 6-thioguanine selection. BEAS-2B cells were either exposed to 4 mM DEA/NO (Et2N[N2O2]Na, an agent that spontaneously releases NO into the medium) or transfected with the inducible nitric oxide synthase (iNOS) gene. The genotypic mutation assay, which has a sensitivity of 1 x 10(-6), showed that 4 mM ENU induces detectable numbers of G --> A transitions in codon 248 of p53 while 5-methylcytosine deamination was not detected in either iNOS-transfected cells or cells exposed to 4 mM DEA/NO. Moreover, ENU was dose-responsively mutagenic in the phenotypic HPRT assay, reaching mutation frequencies of 24 and 96 times that of untreated control cells at ENU concentrations of 4 and 8 mM respectively; by contrast, 4 mM DEA/NO induced no detectable mutations in this assay, nor were any observed in cells transfected with murine iNOS. We conclude that if NO is at all promutagenic in these cells, it is significantly less so than the ethylating mutagen, ENU.
Resumo:
The extravasation of leukocytes from the blood stream into the tissues is a prerequisite for adequate immune surveillance and immune reaction. The leukocyte movement from the bloodstream into the tissues is mediated by molecular bonds. The bonds are formed between adhesion molecules on endothelial cells and their counterparts expressed on leukocytes. Vascular adhesion protein-1 (VAP-1) is an endothelial adhesion molecule mediating leukocyte interactions with endothelium. It is also an enzyme having semicarbazide sensitive amine oxidase (SSAO) activity. The SSAOactivity catalyses deamination of primary amines into corresponding aldehyde and during the enzymatic reaction hydrogen peroxide and ammonia are produced. The aim of this study was to investigate the relationship between the adhesive and enzymatic activities of VAP-1. The role of VAP-1 in leukocyte traffic was studied in vivo under normal and pathological conditions in VAP-1 deficient mice. The results from in vitro flow-based assays indicated that VAP-1 uses both SSAOactivity and its adhesive epitope to bind leukocytes, and both are perquisites for VAP-1 mediated adhesion. Furthermore, in vivo results demonstrated that leukocyte trafficking was impaired in vivo by deleting VAP-1 or inhibiting SSAO-activity. There was impairment in lymphocyte recirculation as well as leukocyte accumulation into the inflamed area. Moreover, the VAP-1 deficient mice did not show generalized defects in antimicrobial responses, whereas significant reduction in tumor progression and neovascularization was observed. These results indicate that VAP-1 could be used as a target in anti-adhesive therapies either by blocking its adhesive epitope with antibodies or by inhibiting its SSAO-activity using inhibitors. Moreover, targeting of VAP-1 may provide a new way of inhibiting neovascularization in tumors.
Resumo:
REVIEW: Living organisms encountered in hostile environments that are characterized by extreme temperatures rely on novel molecular mechanisms to enhance the thermal stability of their proteins, nucleic acids, lipids and cell membranes. Proteins isolated from thermophilic organisms usually exhibit higher intrinsic thermal stabilities than their counterparts isolated from mesophilic organisms. Although the molecular basis of protein thermostability is only partially understood, structural studies have suggested that the factors that may contribute to enhance protein thermostability mainly include hydrophobic packing, enhanced secondary structure propensity, helix dipole stabilization, absence of residues sensitive to oxidation or deamination, and increased electrostatic interactions. Thermostable enzymes such as amylases, xylanases and pectinases isolated from thermophilic organisms are potentially of interest in the optimization of industrial processes due to their enhanced stability. In the present review, an attempt is made to delineate the structural factors that increase enzyme thermostability and to document the research results in the production of these enzymes.