261 resultados para deafness


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maternally inherited diabetes and deafness (MIDD) is an autosomal dominant inherited syndrome caused by the mitochondrial DNA (mtDNA) nucleotide mutation A3243G. It affects various organs including the eye with external ophthalmoparesis, ptosis, and bilateral macular pattern dystrophy.1, 2 The prevalence of retinal involvement in MIDD is high, with 50% to 85% of patients exhibiting some macular changes.1 Those changes, however, can vary between patients and within families dramatically based on the percentage of retinal mtDNA mutations, making it difficult to give predictions on an individual’s visual prognosis...

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adopting a social constructionist framework, the authors conducted a synthetic discourse analysis to explore how people living in Australia with deafness construct their experience of deafness. An online forum facilitated access and communication between the lead author and 24 widely dispersed and linguistically diverse forum contributors. The authors discuss the productive and restrictive effects of the emergent discourse of deafness as abnormal and the rhetorical strategies mobilized in people’s accounts: fitting in, acceptance as permission to be different, and the need to prove normality. Using these strategies was productive in that the forum respondents were enabled to reposition deafness as a positive, socially valued identity position. However, the need to manage deafness was reproduced as an individual concern, disallowing any exploration of how deafness could be reconstructed as socially valued. The article concludes with a discussion of the implications of the deafness as abnormal discourse.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Usher syndrome (USH) is an inherited blindness and deafness disorder with variable vestibular dysfunction. The syndrome is divided into three subtypes according to the progression and severity of clinical symptoms. The gene mutated in Usher syndrome type 3 (USH3), clarin 1 (CLRN1), was identified in Finland in 2001 and two mutations were identified in Finnish patients at that time. Prior to this thesis study, the two CLRN1 gene mutations were the only USH mutations identified in Finnish USH patients. To further clarify the Finnish USH mutation spectrum, all nine USH genes were studied. Seven mutations were identified: one was a previously known mutation in CLRN1, four were novel mutations in myosin VIIa (MYO7A) and two were a novel and a previously known mutation in usherin (USH2A). Another aim of this thesis research was to further study the structure and function of the CLRN1 gene, and to clarify the effects of mutations on protein function. The search for new splice variants resulted in the identification of eight novel splice variants in addition to the three splice variants that were already known prior to this study. Studies of the possible promoter regions for these splice variants showed the most active region included the 1000 bases upstream of the translation start site in the first exon of the main three exon splice variant. The 232 aa CLRN1 protein encoded by the main (three-exon) splice variant was transported to the plasma membrane when expressed in cultured cells. Western blot studies suggested that CLRN1 forms dimers and multimers. The CLRN1 mutant proteins studied were retained in the endoplasmic reticulum (ER) and some of the USH3 mutations caused CLRN1 to be unstable. During this study, two novel CLRN1 sequence alterations were identified and their pathogenicity was studied with cell culture protein expression. Previous studies with mice had shown that Clrn1 is expressed in mouse cochlear hair cells and spiral ganglion cells, but the expression profile in mouse retina remained unknown. The Clrn1 knockout mice display cochlear cell disruption/death, but do not have a retinal phenotype. The zebrafish, Danio rerio, clrn1 was found to be expressed in hair cells associated with hearing and balance. Clrn1 expression was also found in the inner nuclear layer (INL), photoreceptor layer and retinal pigment epithelium layer (RPE) of the zebrafish retina. When Clrn1 production was knocked down with injected morpholino oligonucleotides (MO) targeting Clrn1 translation or correct splicing, the zebrafish larvae showed symptoms similar to USH3 patients. These larvae had balance/hearing problems and reduced response to visual stimuli. The knowledge this thesis research has provided about the mutations in USH genes and the Finnish USH mutation spectrum are important in USH patient diagnostics. The extended information about the structure and function of CLRN1 is a step further in exploring USH3 pathogenesis caused by mutated CLRN1 as well as a step in finding a cure for the disease.