340 resultados para de Sitter spacetime
Resumo:
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité.
Resumo:
We study and look for similarities between the response rates R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) of a static scalar source with constant proper acceleration a(0) interacting with a massless, conformally coupled Klein-Gordon field (i) in de Sitter spacetime, in the Euclidean vacuum, which describes a thermal flux of radiation emanating from the de Sitter cosmological horizon and (ii) in Schwarzschild-de Sitter spacetime, in the Gibbons-Hawking vacuum, which describes thermal fluxes of radiation emanating from both the hole and the cosmological horizons, respectively, where Lambda is the cosmological constant and M is the black hole mass. After performing the field quantization in each of the above spacetimes, we obtain the response rates at the tree level in terms of an infinite sum of zero-energy field modes possessing all possible angular momentum quantum numbers. In the case of de Sitter spacetime, this formula is worked out and a closed, analytical form is obtained. In the case of Schwarzschild-de Sitter spacetime such a closed formula could not be obtained, and a numerical analysis is performed. We conclude, in particular, that R-dS(a(0),Lambda) and R-SdS(a(0),Lambda,M) do not coincide in general, but tend to each other when Lambda-->0 or a(0)-->infinity. Our results are also contrasted and shown to agree (in the proper limits) with related ones in the literature.
Resumo:
A special relativity based on the de Sitter group is introduced, which is a theory that might hold up in the presence of a non-vanishing cosmological constant. Like ordinary special relativity, it retains the quotient character of spacetime, and a notion of homogeneity. As a consequence, the underlying spacetime will be a de Sitter spacetime, whose associated kinematics will differ from that of ordinary special relativity. The corresponding modified notions of energy and momentum are obtained, and the exact relationship between them, which is invariant under a re-scaling of the involved quantities, explicitly exhibited. Since the de Sitter group can be considered a particular deformation of the Poincare group, this theory turns out to be a specific kind of deformed (or doubly) special relativity. Some experimental consequences, as well as the causal structure of spacetime-modified by the presence of the de Sitter horizon-are briefly discussed.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the presence of a cosmological constant, interpreted as a purely geometric entity, absence of matter is represented by a de Sitter spacetime. As a consequence, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity. By considering the kinematics of a spinless particle in a de Sitter spacetime, we study the geodesics of this spacetime, the ensuing definitions of canonical momenta, and explore possible implications for quantum mechanics. © 2007 American Institute of Physics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using conformal coordinates associated with conformal relativity-associated with de Sitter spacetime homeomorphic projection into Minkowski spacetime-we obtain a conformal Klein-Gordon partial differential equation, which is intimately related to the production of quasi-normal modes (QNMs) oscillations, in the context of electromagnetic and/or gravitational perturbations around, e.g., black holes. While QNMs arise as the solution of a wave-like equation with a Poschl-Teller potential, here we deduce and analytically solve a conformal 'radial' d'Alembert-like equation, from which we derive QNMs formal solutions, in a proposed alternative to more completely describe QNMs. As a by-product we show that this 'radial' equation can be identified with a Schrodinger-like equation in which the potential is exactly the second Poschl-Teller potential, and it can shed some new light on the investigations concerning QNMs.
Resumo:
In the presence of a cosmological constant, ordinary Poincaré special relativity is no longer valid and must be replaced by a de Sitter special relativity, in which Minkowski space is replaced by a de Sitter spacetime. In consequence, the ordinary notions of energy and momentum change, and will satisfy a different kinematic relation. Such a theory is a different kind of a doubly special relativity. Since the only difference between the Poincaré and the de Sitter groups is the replacement of translations by certain linear combinations of translations and proper conformal transformations, the net result of this change is ultimately the breakdown of ordinary translational invariance. From the experimental point of view, therefore, a de Sitter special relativity might be probed by looking for possible violations of translational invariance. If we assume the existence of a connection between the energy scale of an experiment and the local value of the cosmological constant, there would be changes in the kinematics of massive particles which could hopefully be detected in high-energy experiments. Furthermore, due to the presence of a horizon, the usual causal structure of spacetime would be significantly modified at the Planck scale. © 2007 American Institute of Physics.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
After decades of successful hot big-bang paradigm, cosmology still lacks a framework in which the early inflationary phase of the universe smoothly matches the radiation epoch and evolves to the present “quasi” de Sitter spacetime. No less intriguing is that the current value of the effective vacuum energy density is vastly smaller than the value that triggered inflation. In this paper, we propose a new class of cosmologies capable of overcoming, or highly alleviating, some of these acute cosmic puzzles. Powered by a decaying vacuum energy density, the spacetime emerges from a pure nonsingular de Sitter vacuum stage, “gracefully” exits from inflation to a radiation phase followed by dark matter and vacuum regimes, and, finally, evolves to a late-time de Sitter phase.
Resumo:
By making use of the fact that the de-Sitter metric corresponds to a hyperquadric in a five-dimensional flat space, it is shown that the three Robertson-Walker metrics for empty spacetime and positive cosmological constant, corresponding to 3-space of positive, negative and zero curvative, are geometrically equivalent. The 3-spaces correspond to intersections of the hyperquadric by hyperplanes, and the time-like geodesics perpendicular to them correspond to intersections by planes, in all three cases.
Resumo:
A solution of the sourceless Einstein's equation with an infinite value for the cosmological constant L is discussed by using Inonu-Wigner contractions of the de Sitter groups and spaces. When Lambda --> infinity, spacetime becomes a four-dimensional cone, dual to Minkowski space by a spacetime inversion. This inversion relates the four-cone vertex to the infinity of Minkowski space, and the four-cone infinity to the Minkowski light-cone. The non-relativistic limit c --> infinity. is further considered, the kinematical group in this case being a modified Galilei group in which the space and time translations are replaced by the non-relativistic limits of the corresponding proper conformal transformations. This group presents the same abstract Lie algebra as the Galilei group and can be named the conformal Galilei group. The results may be of interest to the early Universe Cosmology.
Resumo:
The cosmological constant is shown to have an algebraic meaning: it is essentially an eigenvalue of a Casimir invariant of the Lorentz group acting on the spaces tangent to every spacetime. This is found in the context of de Sitter spacetimes, for which the Einstein equation is a relation between operators. Nevertheless, the result brings, to the foreground the skeleton algebraic structure underlying the geometry of general physical spacetimes. which differ from one another by the fleshening of that structure by different tetrad fields.
Resumo:
The infinite cosmological constant limit of the de Sitter solutions to Einstein's equation is studied. The corresponding spacetime is a singular, four-dimensional cone-space, transitive under proper conformal transformations, which constitutes a new example of maximally-symmetric spacetime. Grounded on its geometric and thermodynamic properties, some speculations are made in connection with the primordial universe. (c) 2005 Elsevier B.V. All rights reserved.