756 resultados para db-CD40 homodimère


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le CD40 est une glycoprotéine transmembranaire de type I, appartenant à la famille des TNFRs, exprimée à la surface des cellules immunitaires, hématopoïétiques, vasculaires, épithéliales, et d’autres types de cellules, y compris les cellules tumorales. Le CD40 ne possédant pas de domaine kinase, pour induire un signal il interagit directement ou indirectement avec des protéines adaptatrices telles que les TRAFs et les JAKs. L’interaction du CD40 avec son principal ligand, le CD154, joue un rôle primordial dans la régulation de la réponse immunitaire et le maintien de l’homéostasie. L’activation du CD40 à la surface des cellules B augmente leur capacité de présentation d’antigène, en plus d’induire la prolifération, la commutation isotypique et l’apoptose. Les patients souffrant de mutations au niveau du gène codant pour le CD40 ou de son ligand sont immunosupprimés et sensibles à des infections opportunistes. Des études ont montré que le CD40 comme d’autres membres de la famille des TNFRs est capable de former des homodimères. Plus récemment, on a montré que la formation du CD40 homodimère est le résultat de son engagement sur les cellules B. En plus, cette homodimérisation du CD40 est importante pour la phosphorylation de l’Akt. L’interaction CD40/CD154 peut avoir un rôle direct dans l’immunothérapie par l’induction de l’apoptose de certaines cellules cancéreuses ou un rôle indirect en activant les cellules présentatrices d’antigènes (CPA) afin d'augmenter l’efficacité de l’activation des cellules T cytotoxiques. Nos résultats montrent que l’induction de la mort cellulaire par le CD40 requiert la perméabilisation du lysosome, la libération de la cathepsine B, la présence de ROS et une interaction avec le TRAF6, cette mort cellulaire programmée est plus importante en présence de la forme monomérique du CD40, muté au niveau de la cystéine 238. Par ailleurs, l’homodimérisation du CD40 requerrait sa translocation vers les radeaux lipidiques et nécessiterait la présence des ROS. Cette homodimérisation du CD40 semble être importante pour l’activation des cellules B par le biais de l’induction de l’expression du CD23, CD69 et CD80. De plus, nos résultats montrent pour la première fois une implication du CD40 homodimère dans l’induction du CD23 par le biais du TLR4. Nos résultats soulignent l’importance du CD40 homodimère dans certaines voies de signalisation. Ainsi, ils mettent en évidence le rôle de la Cys-238 dans la coopération entre des récepteurs de la réponse immunitaire innée et adaptative. Toutes ces données permettraient une meilleure compréhension de certaines voies de signalisation impliquées dans plusieurs maladies auto-immunes et faisant objet de plusieurs essais thérapeutiques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The vascular effects of nitrolinoleate (LNO(2)), an endogenous product of linoleic acid (LA) nitration by nitric oxide-derived species and a potential nitrosating agent, were investigated on rat endothelial-leukocyte interactions. Confocal microscopy analysis demonstrated that LNO(2) was capable to deliver free radical nitric oxide ((center dot)NO) into cells, 5 min after its administration to cultured cells, with a peak of liberation at 30 min. THP-1 monocytes incubated with LNO(2) for 5 min presented nitrosation of CD40, leading to its inactivation. Other anti-inflammatory actions of LNO(2) were observed in vivo by intravital microscopy assays. LNO(2) decreased the number of adhered leukocytes in postcapillary venules of the mesentery network. In addition to this, LNO(2) reduced mRNA and protein expression of 2-integrin in circulating leukocytes, as well as VCAM-1 in endothelial cells isolated from postcapillary venules, confirming its antiadhesive effects on both cell types. Moreover, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, a nitric oxide scavenger, partially abolished the inhibitory action of LNO(2) on leukocyte-endothelium interaction, suggesting that the antiadhesion effects of LNO(2) involve a dual role in leukocyte adhesion, acting as a nitric oxide donor as well as through nitric oxide-independent mechanisms. In conclusion, LNO(2) inhibited adhesion molecules expression and promoted (center dot)NO inactivation of the CD40-CD40L system, both important processes of the inflammatory response. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An understanding of the biochemical control of dendritic cell (DC) differentiation/activation is essential for improving T cell immunity by various immunotherapeutic approaches, including DC immunization. Ligation of CD40 enhances DC function, including conditioning for CTL priming. NF-kappaB, and particularly RelB, is an essential control pathway for myeloid DC differentiation. Furthermore, RelB regulates B cell Ag-presenting function. We hypothesized that CD40 ligand (CD40L) and TNF-alpha, which differ in their capacity to condition DC, would also differ in their capacity to activate NF-kappaB. DC differentiated for 2 days from monocytes in the presence of GM-CSF and IL-4 were used as a model, as NF-kappaB activity was constitutively low. The capacity of DC to activate T cells following CD40L treatment was enhanced compared with TNF-alpha treatment, and this was NF-kappaB dependent. Whereas RelB/p50 translocation induced by TNF-alpha was attenuated after 6 h, RelB/p50 nuclear translocation induced by CD40L was sustained for at least 24 h. The mechanism of this difference related to enhanced degradation of IkappaBalpha following CD40L stimulation. However, NF-kappaB activation induced by TNF-alpha could be sustained by blocking autocrine IL-10. These data indicate that NF-kappaB activation is essential for T cell activation by DC, and that this function is enhanced if DC NF-kappaB activation is prolonged. Because IL-10 moderates DC NF-kappaB activation by TNF-alpha, sustained NF-kappaB activation can be achieved by blocking IL-10 in the presence of stimuli that induce TNF-alpha.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40-1igand (CD40-L), a member of the tumour necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. CD40 is expressed by B cells, monocytes and dendritic cells. Interactions between CD40-L and CD40 induce B cell proliferation, differentiation, immunoglobulin production and isotype switching as well as monocyte activation and dendritic cell differentiation. Since the rheumatoid synovium is characterized by T cell activation, B cell immunoglobulin production, monocyte cytokine production and dendritic cell differentiation, the expression and function of CD40-L in RA was examined. RA synovial fluid (SF) T ceils expressed CD40-L mRNA, as well as low level cell surface CD40-L. A subset of CD4+ RA synovial fluid T cells could express cell surface CD40-L within 15 rain of in vitro activation even in the presence of cycloheximide. CD40-L expressed by RA SF T cells was functional, since RA SF T cells, but not normal PB T cells, stimulated CD40-L dependent B cell immunoglobulin production in the absence of in vitro T cell activation. These data indicate that SF T cells express functionally significant levels of surface CD40-L, and have the potential for rapid upregulation of surface expression from preformed CD40-L stores. Thus, CD40-L is likely to play a central role in the perpetuation of RA by induction of Ig synthesis, cytokine production and dendritic cell differentiation. Moreover, the data provide important evidence of recent activation of RA synovial T cells. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systemic lupus erythematosus (SLE) is a heterogeneous disease involving several immune cell types and pro-inflammatory signals, including the one triggered by binding of CD40L to the receptor CD40. Peroxisome-proliferator activated receptor gamma (PPAR gamma) is a transcription factor with anti-inflammatory properties. Here we investigated whether CD40 and PPAR gamma could exert opposite effects in the immune response and the possible implications for SLE. Increased PPAR gamma mRNA levels were detected by real-time PCR in patients with active SLE, compared to patients with inactive SLE PPAR gamma/GAPDH mRNA = 2.21 +/- 0.49 vs. 0.57 +/- 0.14, respectively (p < 0.05) or patients with infectious diseases and healthy subjects (p < 0.05). This finding was independent of the corticosteroid therapy. We further explored these observations in human THP1 and in SLE patient-derived macrophages, where activation of CD40 by CD40L promoted augmented PPAR gamma gene transcription compared to non-stimulated cells (PPAR gamma/GAPDH mRNA = 1.14 +/- 0.38 vs. 0.14 +/- 0.01, respectively; p < 0.05). This phenomenon occurred specifically upon CD40 activation, since lipopolysaccharide treatment did not induce a similar response. In addition, increased activity of PPAR gamma was also detected after CD40 activation, since higher PPAR gamma-dependent transcription of CD36 transcription was observed. Furthermore, CD40L-stimulated transcription of CD80 gene was elevated in cells treated with PPAR gamma-specific small interfering RNA (small interfering RNA, siRNA) compared to cells treated with CD40L alone (CD80/GAPDH mRNA = 0.11 +/- 0.04 vs. 0.05 +/- 0.02, respectively; p < 0.05), suggesting a regulatory role for PPAR gamma on the CD40/CD40L pathway. Altogether, our findings outline a novel mechanism through which PPAR gamma regulates the inflammatory signal initiated by activation of CD40, with important implications for the understanding of immunological mechanisms underlying SLE and the development of new treatment strategies. Lupus (2011) 20, 575-587.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Signal transduction through the surface molecule CD40 is critical for cellular activation in immunoinflammatory states such as sepsis. The mechanisms regulating this pathway are not completely understood. Because CD40 displays potentially regulatory cysteine residues and CD40 is probably exposed to NO in the inflammatory milieu, we hypothesized that S-nitrosylation, the interaction of NO with cysteines residues, acts as a post-translational modification on CD40, coregulating the signaling activity and, therefore, the level of cellular activation. As assessed by the biotin switch and the reduction/chemiluminescence S-nitrosylation detection techniques, CD40 was found to be S-nitrosylated endogenously and upon exposure to NO donors in both human and murine macrophages. S-nitrosylation of CD40 was associated with milder activation by its ligand (CD40L), leading to reduced in vitro cytokine (IL-1 beta, IL-12, and TNF-alpha) production, which was reversed in the presence of inhibitors of NO synthesis. S-nitrosylated CD40 was found in resting RAW 246.7 macrophages and BALB/c mice peritoneal macrophages, turning into the denitrosylated state upon in vitro or systemic exposure, respectively, to LPS. Moreover, monocytes from patients with sepsis displayed denitrosylated CD40 in contrast to the CD40 S-nitrosylation measured in healthy individuals. Finally, in an attempt to explain how S-nitrosylation regulates CD40 activation, we demonstrate that NO affects the redistribution of CD40 on the cell surface, which is a requirement for optimal signal transduction. Our results support a novel post-translational regulatory mechanism in which the CD40 signal may be, at least in part, dependent on cellular activation-induced receptor denitrosylation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40 ligand (CD40-L), a member of the tumor necrosis family of transmembrane glycoproteins, is rapidly and transiently expressed on the surface of recently activated CD4+ T cells. Interactions between CD40-L and CD40 induce B cell immunoglobulin production as well as monocyte activation and dendritic cell differentiation. Since these features characterize rheumatoid arthritis (RA), the expression and function of CD40-L in RA was examined. Freshly isolated RA peripheral blood (PB) and synovial fluid (SF)T cells expressed CD40-L mRNA as well as low level cell surface CD40-L. An additional subset of CD4+ RA SF T cells upregulated cell surface CD40-L expression within 15 min of in vitro activation even in the presence of cycloheximide, but soluble CD40-L was not found in SF. CD40-L expressed by RA T cells was functional, since RA PB and SF T cells but not normal PB T cells stimulated CD40-L-dependent B cell immunoglobulin production and dendritic cell IL-12 expression in the absence of prolonged in vitro T cell activation. In view of the diverse proinflammatory effects of CD40-L, this molecule is likely to play a central role in the perpetuation of rheumatoid synovitis. Of importance, blockade of CD40-L may prove highly effective as a disease modifying therapy for RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction. Erectile dysfunction (ED) in diabetes is associated with autonomic neuropathy and endothelial dysfunction. Whereas the nonadrenergic-noncholinergic (NANC)/neurogenic nitric oxide pathway has received great attention in diabetes-associated ED, few studies have addressed sympathetic overactivity. Aim. To test the hypothesis that adenosine-induced inhibition of adrenergic-mediated contractile responses in mouse corpus cavernosum is impaired in the presence of diabetes. Methods. The db/db (obesity and type II diabetes caused by a leptin receptor mutation) mouse strain was used as a model of obesity and type II diabetes, and standard procedures were performed to evaluate functional cavernosal responses. Main Outcome Measures. Increased cavernosal responses to sympathetic stimulation in db/db mice are not associated with impaired prejunctional actions of adenosine. Results. Electrical field stimulation (EFS)-, but not phenylephrine (PE)-, induced contractions are enhanced in cavernosal strips from db/db mice in comparison with those from lean littermates. Direct effects of adenosine, 2-chloro-adenosine, A(1) receptor agonist C-8031 (N6 cyclopentyladenosine), and sodium nitroprusside are similar between the strips from lean and db/db mice, whereas relaxant responses to acetylcholine and NANC stimulation are significantly impaired in the cavernosal strips from db/db mice. 5`-Iodotubercidin (adenosine kinase inhibitor) and dipyridamole (inhibitor of adenosine transport), as well as the A(1) agonist C-8031, significantly and similarly inhibit contractions induced by stimulation of adrenergic nerves in the cavernosal strips from lean and db/db mice. Conclusions. Results from this study suggest that corpora cavernosa from obese and diabetic db/db mice display altered neural-mediated responses that would favor penile detumescence, i.e., increased contractile response to adrenergic nerve stimulation and decreased relaxant responses upon activation of NANC nerves. However, increased cavernosal responses to adrenergic nerve stimulation are not due to impaired negative modulation of sympathetic neurotransmission by adenosine in this diabetic model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Dendritic cells (DC) are the only antigen-presenting cells that can activate naive T lymphocytes and initiate a primary immune response. They are also thought to have a role in immune tolerance. DC traffic from the blood to peripheral tissue where they become activated. They then present antigen and the costimulating signals necessary to initiate an immune response. In this study, we investigated the number, subsets, and activation pattern of circulating and intestinal DC from patients with clinically mild ulcerative colitis (UC) or Crohn's disease. METHODS: Patients were recruited, if they were not taking immunosuppressive therapy, and were assessed for clinical severity of their disease using for UC, the Clinical Activity Index, and for Crohn's disease, the Crohn's Disease Activity Index. Blood CD11c(+) and CD11c(-) DC subsets, expression of costimulatory antigens, CD86 and CD40, and the early differentiation/activation antigen, CMRF44, were enumerated by multicolor flow cytometry of lineage negative (lin(-) = CD3(-), CD19(-), CD14(-), CD16(-)) HLA-DR+ DC. These data were compared with age-matched healthy and the disease control groups of chronic noninflammatory GI diseases (cGI), acute noninflammatory GI diseases (aGI), and chronic non-GI inflammation (non-GI). In addition, cryostat sections of colonoscopic biopsies from healthy control patients and inflamed versus noninflamed gut mucosa of inflammatory bowel disease (IBD) patients were examined for CD86(+) and CD40(+)lin(-) cells. RESULTS: Twenty-one Crohn's disease and 25 UC patients, with mean Crohn's Disease Activity Index of 98 and Clinical Activity Index of 3.1, and 56 healthy controls, five cGI, five aGI, and six non-GI were studied. CD11c(+) and CD11c(-) DC subsets did not differ significantly between Crohn's, UC, and healthy control groups. Expression of CD86 and CD40 on freshly isolated blood DC from Crohn's patients appeared higher (16.6%, 31%) and was significantly higher in UC (26.6%, 46.3%) versus healthy controls (5.5%, 25%) (p = 0.004, p = 0.012) and non-GI controls (10.2%, 22.8%) (p = 0.012, p = 0.008), but not versus cGI or aGI controls. CD86(+) and CD40(+) DC were also present in inflamed colonic and ileal mucosa from UC and Crohn's patients but not in noninflamed IBD mucosa or normal mucosa. Expression of the CMRF44 antigen was low on freshly isolated DC, but it was upregulated after 24-h culture on DC from all groups, although significantly less so on DC from UC versus Crohn's or healthy controls (p = 0.024). The CMRF44(+) antigen was mainly associated with CD11c(+) DC, and in UC was inversely related to the Clinical Activity Index (r = -0.69, p = 0.0002). CONCLUSIONS: There is upregulation of costimulatory molecules on blood DC even in very mild IBD but surprisingly, there is divergent expression of the differentiation/activation CMRF44 antigen. Upregulation of costimulatory molecules and divergent expression of CMRF44 in blood DC was also apparent in cGI and aGI but not in non-GI or healthy controls, whereas intestinal CD86(+) and CD40(+) DC were found only in inflamed mucosa from IBD patients. Persistent or distorted activation of blood DC or divergent regulation of costimulatory and activation antigens may have important implications for gut mucosal immunity and inflammation. (Am J Gastroenterol 2001;96:2946-2956. (C) 2001 by Am. Coll. of Gastroenterology).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40 has emerged as a key signaling pathway for the function of B cells, monocytes, and dendritic cells (DC) in the immune system, and plays a major role in inflammatory pathways of nonhemopoletic cells. CD40 is expressed by monocytes and DC and is up-regulated when DC migrate from the periphery to draining lymph nodes (DLN) in response to microbial challenge. CD154 signaling by MHC-restricted, activated CD4* T cells induces differentiation of DC, as defined by an increased surface expression of MHC, costimulatory, and adhesion molecules. Thus, CD40 functions in the adaptive immune response as a trigger for the expression of costimulatory molecules for efficient T-cell activation. CD40 ligation of DC also has the capacity to induce high levels of the cytokine IL-12, which polarizes CD4(+) T cells toward a T helper 1 (Th1) type, enhances proliferation of CD8(+) T cells, and activates NK cells. CD40 may also play an important role in the decision between tolerance and immunity and the generation of regulatory CD4(+) T cells that are thought to maintain peripheral self-tolerance in vivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CD40 is a key signaling pathway for the function of B cells, monocytes, and dendritic cells in the immune system, and plays an important role in inflammatory pathways of nonhemopoietic cells. The NFkappaB family of transcription factors is a critical mediator in inflammation. NFkappaB is involved both in the regulation of CD40 expression and in cell signaling after CD40 ligation. This positive feedback loop linking NFkappaB and CD40 plays an important role in the control of the adaptive immune response, with fundamental implications for immunity and tolerance in vivo.