936 resultados para data processing in real-time
Resumo:
Based on the data processing technologies of interferential spectrometer, a sort of real-time data processing system on chip of interferential imaging spectrometer was studied based on large capacitance and high speed field programmable gate array( FPGA) device. The system integrates both interferograrn sampling and spectrum rebuilding on a single chip of FPGA and makes them being accomplished in real-time with advantages such as small cubage, fast speed and high reliability. It establishes a good technical foundation in the applications of imaging spectrometer on target detection and recognition in real-time.
Resumo:
Experiments are described which show that a monobath can be used for rapid in situ processing in a liquid gate for real-time holographic interferometry. This also permits utilization of a very simple solution handling system. Changes in emulsion thickness are reduced to an acceptable level and problems of matching refractive indices are eliminated by exposing and viewing the holograms in water. Excellent null patterns are obtained and real-time holographic interferometry can be carried out over long periods of time.
Resumo:
NanoStreams explores the design, implementation,and system software stack of micro-servers aimed at processingdata in-situ and in real time. These micro-servers can serve theemerging Edge computing ecosystem, namely the provisioningof advanced computational, storage, and networking capabilitynear data sources to achieve both low latency event processingand high throughput analytical processing, before consideringoff-loading some of this processing to high-capacity datacentres.NanoStreams explores a scale-out micro-server architecture thatcan achieve equivalent QoS to that of conventional rack-mountedservers for high-capacity datacentres, but with dramaticallyreduced form factors and power consumption. To this end,NanoStreams introduces novel solutions in programmable & con-figurable hardware accelerators, as well as the system softwarestack used to access, share, and program those accelerators.Our NanoStreams micro-server prototype has demonstrated 5.5×higher energy-efficiency than a standard Xeon Server. Simulationsof the microserver’s memory system extended to leveragehybrid DDR/NVM main memory indicated 5× higher energyefficiencythan a conventional DDR-based system.
Resumo:
Model-based estimates of future uncertainty are generally based on the in-sample fit of the model, as when Box-Jenkins prediction intervals are calculated. However, this approach will generate biased uncertainty estimates in real time when there are data revisions. A simple remedy is suggested, and used to generate more accurate prediction intervals for 25 macroeconomic variables, in line with the theory. A simulation study based on an empirically-estimated model of data revisions for US output growth is used to investigate small-sample properties.
Resumo:
Im Bereich sicherheitsrelevanter eingebetteter Systeme stellt sich der Designprozess von Anwendungen als sehr komplex dar. Entsprechend einer gegebenen Hardwarearchitektur lassen sich Steuergeräte aufrüsten, um alle bestehenden Prozesse und Signale pünktlich auszuführen. Die zeitlichen Anforderungen sind strikt und müssen in jeder periodischen Wiederkehr der Prozesse erfüllt sein, da die Sicherstellung der parallelen Ausführung von größter Bedeutung ist. Existierende Ansätze können schnell Designalternativen berechnen, aber sie gewährleisten nicht, dass die Kosten für die nötigen Hardwareänderungen minimal sind. Wir stellen einen Ansatz vor, der kostenminimale Lösungen für das Problem berechnet, die alle zeitlichen Bedingungen erfüllen. Unser Algorithmus verwendet Lineare Programmierung mit Spaltengenerierung, eingebettet in eine Baumstruktur, um untere und obere Schranken während des Optimierungsprozesses bereitzustellen. Die komplexen Randbedingungen zur Gewährleistung der periodischen Ausführung verlagern sich durch eine Zerlegung des Hauptproblems in unabhängige Unterprobleme, die als ganzzahlige lineare Programme formuliert sind. Sowohl die Analysen zur Prozessausführung als auch die Methoden zur Signalübertragung werden untersucht und linearisierte Darstellungen angegeben. Des Weiteren präsentieren wir eine neue Formulierung für die Ausführung mit fixierten Prioritäten, die zusätzlich Prozessantwortzeiten im schlimmsten anzunehmenden Fall berechnet, welche für Szenarien nötig sind, in denen zeitliche Bedingungen an Teilmengen von Prozessen und Signalen gegeben sind. Wir weisen die Anwendbarkeit unserer Methoden durch die Analyse von Instanzen nach, welche Prozessstrukturen aus realen Anwendungen enthalten. Unsere Ergebnisse zeigen, dass untere Schranken schnell berechnet werden können, um die Optimalität von heuristischen Lösungen zu beweisen. Wenn wir optimale Lösungen mit Antwortzeiten liefern, stellt sich unsere neue Formulierung in der Laufzeitanalyse vorteilhaft gegenüber anderen Ansätzen dar. Die besten Resultate werden mit einem hybriden Ansatz erzielt, der heuristische Startlösungen, eine Vorverarbeitung und eine heuristische mit einer kurzen nachfolgenden exakten Berechnungsphase verbindet.
Resumo:
As embedded systems evolve, problems inherent to technology become important limitations. In less than ten years, chips will exceed the maximum allowed power consumption affecting performance, since, even though the resources available per chip are increasing, frequency of operation has stalled. Besides, as the level of integration is increased, it is difficult to keep defect density under control, so new fault tolerant techniques are required. In this demo work, a new dynamically adaptable virtual architecture (ARTICo3) to allow dynamic and context-aware use of resources is implemented in a high performance Wireless Sensor node (HiReCookie) to perform an image processing application.
Resumo:
We propose an original method to geoposition an audio/video stream with multiple emitters that are at the same time receivers of the mixed signal. The achieved method is suitable for those comes where a list of positions within a designated area is encoded with a degree of precision adjusted to the visualization capabilities; and is also easily extensible to support new requirements. This method extends a previously proposed protocol, without incurring in any performance penalty.
Resumo:
In this paper, we propose an original method to geoposition an audio/video stream with multiple emitters that are at the same time receivers of the mixed signal. The obtained method is suitable when a list of positions within a known area is encoded with precision tailored to the visualization capabilities of the target device. Nevertheless, it is easily adaptable to new precision requirements, as well as parameterized data precision. This method extends a previously proposed protocol, without incurring in any performance penalty.
Resumo:
The authors currently engage in two projects to improve human-computer interaction (HCI) designs that can help conserve resources. The projects explore motivation and persuasion strategies relevant to ubiquitous computing systems that bring real-time consumption data into the homes and hands of residents in Brisbane, Australia. The first project seeks to increase understanding among university staff of the tangible and negative effects that excessive printing has on the workplace and local environment. The second project seeks to shift attitudes toward domestic energy conservation through software and hardware that monitor real-time, in situ electricity consumption in homes across Queensland. The insights drawn from these projects will help develop resource consumption user archetypes, providing a framework linking people to differing interface design requirements.
Resumo:
Internet services are important part of daily activities for most of us. These services come with sophisticated authentication requirements which may not be handled by average Internet users. The management of secure passwords for example creates an extra overhead which is often neglected due to usability reasons. Furthermore, password-based approaches are applicable only for initial logins and do not protect against unlocked workstation attacks. In this paper, we provide a non-intrusive identity verification scheme based on behavior biometrics where keystroke dynamics based-on free-text is used continuously for verifying the identity of a user in real-time. We improved existing keystroke dynamics based verification schemes in four aspects. First, we improve the scalability where we use a constant number of users instead of whole user space to verify the identity of target user. Second, we provide an adaptive user model which enables our solution to take the change of user behavior into consideration in verification decision. Next, we identify a new distance measure which enables us to verify identity of a user with shorter text. Fourth, we decrease the number of false results. Our solution is evaluated on a data set which we have collected from users while they were interacting with their mail-boxes during their daily activities.
Resumo:
Data identification is a key task for any Internet Service Provider (ISP) or network administrator. As port fluctuation and encryption become more common in P2P traffic wishing to avoid identification, new strategies must be developed to detect and classify such flows. This paper introduces a new method of separating P2P and standard web traffic that can be applied as part of a data mining process, based on the activity of the hosts on the network. Unlike other research, our method is aimed at classifying individual flows rather than just identifying P2P hosts or ports. Heuristics are analysed and a classification system proposed. The accuracy of the system is then tested using real network traffic from a core internet router showing over 99% accuracy in some cases. We expand on this proposed strategy to investigate its application to real-time, early classification problems. New proposals are made and the results of real-time experiments compared to those obtained in the data mining research. To the best of our knowledge this is the first research to use host based flow identification to determine a flows application within the early stages of the connection.
Resumo:
Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.
Resumo:
Following the thermodynamic formulation of a multifractal measure that was shown to enable the detection of large fluctuations at an early stage, here we propose a new index which permits us to distinguish events like financial crises in real time. We calculate the partition function from which we can obtain thermodynamic quantities analogous to the free energy and specific heat. The index is defined as the normalized energy variation and it can be used to study the behavior of stochastic time series, such as financial market daily data. Famous financial market crashes-Black Thursday (1929), Black Monday (1987) and the subprime crisis (2008)-are identified with clear and robust results. The method is also applied to the market fluctuations of 2011. From these results it appears as if the apparent crisis of 2011 is of a different nature to the other three. We also show that the analysis has forecasting capabilities. © 2012 Elsevier B.V. All rights reserved.
Resumo:
The main objective of this work is to present an efficient method for phasor estimation based on a compact Genetic Algorithm (cGA) implemented in Field Programmable Gate Array (FPGA). To validate the proposed method, an Electrical Power System (EPS) simulated by the Alternative Transients Program (ATP) provides data to be used by the cGA. This data is as close as possible to the actual data provided by the EPS. Real life situations such as islanding, sudden load increase and permanent faults were considered. The implementation aims to take advantage of the inherent parallelism in Genetic Algorithms in a compact and optimized way, making them an attractive option for practical applications in real-time estimations concerning Phasor Measurement Units (PMUs).