959 resultados para dark respiration


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dark respiration (nonphotorespiratory mitochondrial CO2 release) in the light (R-L) of the intertidal macroalga Ulva lactuca (Chorophyta) during emersion was investigated with respect to its response to variations in temperature and desiccation. R-L was estimated by CO2 gas-exchange analysis using the Kok effect method, whereas dark respiration in darkness (R-D) was determined from CO2 release at zero light. Rates of R, were significantly and consistently lower than those of R-D in emersed U. lactuca across all the temperature and desiccation levels measured. This demonstrated that dark respiration was partially depressed in the light, with the percentage inhibition ranging from 32 to 62%. Desiccation exerted a negative effect on R-L and R-D at a high temperature, 33 degrees C, whereas it had much less effect on respiration at low and moderate temperatures, 23 and 28 degrees C. In general, R-L and R-D increased with increasing temperature in U. lactuca during all stages of emersion but responded less positively to temperature change with increasing desiccation. Additionally, the Q(10) value (i.e. the proportional increase of respiration for each 10 degrees C rise in temperature) for R-L calculated over the temperature range of 23 to 33 degrees C was significantly higher than that for R-D in U. lactuca during the initial stages of emersion. Respiratory carbon loss as a percentage of gross photosynthetic carbon gain increased with increasing temperature and/or desiccation but was significantly reduced when estimated using R-L rather than R-D. It is suggested that measurements of R-L and how it changes in a variable environment are as important as estimates of R-D and photosynthesis in determining simultaneous balance between photosynthetic carbon uptake and respiratory carbon loss and in modeling the net daily carbon gain for an intertidal macroalga.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ocean acidification is expected to lower the net accretion of coral reefs yet little is known about its effect on coral photophysiology. This study investigated the effect of increasing CO2 on photosynthetic capacity and photoprotection in Acropora formosa. The photoprotective role of photorespiration within dinoflagellates (genus Symbiodinium) has largely been overlooked due to focus on the presence of a carbon-concentrating mechanism despite the evolutionary persistence of a Form II Rubisco. The photorespiratory fixation of oxygen produces phosphoglycolate that would otherwise inhibit carbon fixation though the Calvin cycle if it were not converted to glycolate by phosphoglycolate phosphatase (PGPase). Glycolate is then either excreted or dealt with by enzymes in the photorespiratory glycolate and/or glycerate pathways adding to the pool of carbon fixed in photosynthesis. We found that CO2 enrichment led to enhanced photoacclimation (increased chlorophyll a per cell) to the subsaturating light levels. Light-enhanced dark respiration per cell and xanthophyll de-epoxidation increased, with resultant decreases in photosynthetic capacity (Pnmax) per chlorophyll. The conservative CO2 emission scenario (A1B; 600-790 ppm) led to a 38% increase in the Pnmax per cell whereas the 'business-as-usual' scenario (A1F1; 1160-1500 ppm) led to a 45% reduction in PGPase expression and no change in Pnmax per cell. These findings support an important functional role for PGPase in dinoflagellates that is potentially compromised under CO2 enrichment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaf dark respiration (R) is an important component of plant carbon balance, but the effects of rising atmospheric CO2 on leaf R during illumination are largely unknown. We studied the effects of elevated CO2 on leaf R in light (RL) and in darkness (RD) in Xanthium strumarium at different developmental stages. Leaf RL was estimated by using the Kok method, whereas leaf RD was measured as the rate of CO2 efflux at zero light. Leaf RL and RD were significantly higher at elevated than at ambient CO2 throughout the growing period. Elevated CO2 increased the ratio of leaf RL to net photosynthesis at saturated light (Amax) when plants were young and also after flowering, but the ratio of leaf RD to Amax was unaffected by CO2 levels. Leaf RN was significantly higher at the beginning but significantly lower at the end of the growing period in elevated CO2-grown plants. The ratio of leaf RL to RD was used to estimate the effect of light on leaf R during the day. We found that light inhibited leaf R at both CO2 concentrations but to a lesser degree for elevated (17–24%) than for ambient (29–35%) CO2-grown plants, presumably because elevated CO2-grown plants had a higher demand for energy and carbon skeletons than ambient CO2-grown plants in light. Our results suggest that using the CO2 efflux rate, determined by shading leaves during the day, as a measure for leaf R is likely to underestimate carbon loss from elevated CO2-grown plants.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Measurement of discrimination against 18O during dark respiration in plants is currently accepted as the only reliable method of estimating the partitioning of electrons between the cytochrome and alternative pathways. In this paper, we review the theory of the technique and its application to a gas-phase system. We extend it to include sampling effects and show that the isotope discrimination factor, D, is calculated as –dln(1 + δ)/dlnO*, where δ is isotopic composition of the substrate oxygen and O*=[O2]/[N2] in a closed chamber containing tissue respiring in the dark. It is not necessary to integrate the expression but, if the integrated form is used, the resultant regression should not be constrained through the origin. This is important since any error in D will have significant effects on the estimation of the flux of electrons through the two pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High-value fruit crops are exposed to a range of environmental conditions that can reduce fruit quality. Solar injury (SI) or sunburn is a common disorder in tropical, sub-tropical, and temperate climates and is related to: 1) high fruit surface temperature; 2) high visible light intensity; and, 3) ultraviolet radiation (UV). Positional changes in fruit that are caused by increased weight or abrupt changes that result from summer pruning, limb breakage, or other damage to the canopy can expose fruit to high solar radiation levels, increased fruit surface temperatures, and increased UV exposure that are higher than the conditions to which they are adapted. In our studies, we examined the effects of high fruit surface temperature, saturating photosynthetically-active radiation (PAR), and short-term UV exposure on chlorophyll fluorescence, respiration, and photosynthesis of fruit peel tissues from tropical and temperate fruit in a simulation of these acute environmental changes. All tropical fruits (citrus, macadamia, avocado, pineapple, and custard apple) and the apple cultivars 'Gala', 'Gold Rush', and 'Granny Smith' increased dark respiration (A0) when exposed to UV, suggesting that UV repair mechanisms were induced. The maximum quantum efficiency of photosystem II (Fv/Fm) and the quantum efficiency of photosystem II (ΦII) were unaffected, indicating no adverse effects on photosystem II (PSII). In contrast, 'Braeburn' apple had a reduced Fv/Fm with no increase in A0 on all sampling dates. There was a consistent pattern in all studies. When Fv/Fm was unaffected by UV treatment, A0 increased significantly. Conversely, when Fv/Fm was reduced by UV treatment, then A0 was unaffected. The pattern suggests that when UV repair mechanisms are effective, PSII is adequately protected, and that this protection occurs at the cost of higher respiration. However, when the UV repair mechanisms are ineffective, not only is PSII damaged, but there is additional short-term damage to the repair mechanisms, indicated by a lack of respiration to provide energy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We studied polar and temperate samples of the lichen Cetraria aculeata to investigate whether genetical differences between photobionts are correlated with physiological properties of the lichen holobiont. Net photosynthesis and dark respiration (DR) at different temperatures (from 0 to 30 °C) and photon flux densities (from 0 to 1,200 ?mol/m**2/s) were studied for four populations of Cetraria aculeata. Samples were collected from maritime Antarctica, Svalbard, Germany and Spain, representing different climatic situations. Sequencing of the photobiont showed that the investigated samples fall in the polar and temperate clade described in Fernández-Mendoza et al. (2011, doi:10.1111/j.1365-294X.2010.04993.x). Lichens with photobionts from these clades differ in their temperature optimum for photosynthesis, maximal net photosynthesis, maximal DR and chlorophyll content. Maximal net photosynthesis was much lower in Antarctica and Svalbard than in Germany and Spain. The difference was smaller when rates were expressed by chlorophyll content. The same is true for the temperature optima of polar (11 °C) and temperate (15 and 17 °C) lichens. Our results indicate that lichen mycobionts may adapt or acclimate to local environmental conditions either by selecting algae from regional pools or by regulating algal cell numbers (chlorophyll content) within the thallus.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

I tested the hypothesis that high pCO2 (76.6 Pa and 87.2 Pa vs. 42.9 Pa) has no effect on the metabolism of juvenile massive Porites spp. after 11 days at 28 °C and 545 µmol quanta/m**2/s. The response was assessed as aerobic dark respiration, skeletal weight (i.e., calcification), biomass, and chlorophyll fluorescence. Corals were collected from the shallow (3-4 m) back reef of Moorea, French Polynesia (17°28.614'S, 149°48.917'W), and experiments conducted during April and May 2011. An increase in pCO2 to 76.6 Pa had no effect on any dependent variable, but 87.2 Pa pCO2 reduced area-normalized (but not biomass-normalized) respiration 36 %, as well as maximum photochemical efficiency (Fv/Fm) of open RCIIs and effective photochemical efficiency of RCIIs in actinic light (Delta F/F'm ); neither biomass, calcification, nor the energy expenditure coincident with calcification (J/g) was effected. These results do not support the hypothesis that high pCO2 reduces coral calcification through increased metabolic costs and, instead, suggest that high pCO2 causes metabolic depression and photochemical impairment similar to that associated with bleaching. Evidence of a pCO2 threshold between 76.6 and 87.2 Pa for inhibitory effects on respiration and photochemistry deserves further attention as it might signal the presence of unpredictable effects of rising pCO2.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. The often complex architecture of coral reefs forms a diversity of light microhabitats. Analogous to patterns in forest plants, light variation may drive strategies for efficient light utilization and metabolism in corals. 2. We investigated the spatial distribution of light regimes in a spur-and-groove reef environment and examine the photophysiology of the coral Montipora monasteriata (Forskal 1775), a species with a wide habitat distribution. Specifically, we examined the variation in tissue and skeletal thickness, and photosynthetic and metabolic responses among contrasting light microhabitats. 3. Daily irradiances reaching corals in caves and under overhangs were 1-5 and 30-40% of those in open habitats at similar depth (3-5 m), respectively. Daily rates of net photosynthesis of corals in cave habitats approximated zero, suggesting more than two orders of magnitude variation in scope for growth across habitats. 4. Three mechanisms of photoadaptation or acclimation were observed in cave and overhang habitats: (1) a 20-50% thinner tissue layer and 40-60% thinner skeletal plates, maximizing light interception per unit mass; (2) a two- to threefold higher photosynthetic efficiency per unit biomass; and (3) low rates of dark respiration. 5. Specimens from open and cave habitats displayed a high capacity to acclimate to downshifts or upshifts in irradiance, respectively. However, specimens in caves displayed limited acclimation to further irradiance reduction, indicating that these live near their irradiance limit. 6. Analogous to patterns for some plant species in forest gaps, the morphological plasticity and physiological flexibility of M. monasteriata enable it to occupy light habitats that vary by more than two orders of magnitude.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cyanobacteria perform photosynthesis and respiration in the thylakoid membrane, suggesting that the two processes are interlinked. However, the role of the respiratory electron transfer chain under natural environmental conditions has not been established. Through targeted gene disruption, mutants of Synechocystis sp. PCC 6803 were generated that lacked combinations of the three terminal oxidases: the thylakoid membrane-localized cytochrome c oxidase (COX) and quinol oxidase (Cyd) and the cytoplasmic membrane-localized alternative respiratory terminal oxidase. All strains demonstrated similar growth under continuous moderate or high light or 12-h moderate-light/dark square-wave cycles. However, under 12-h high-light/dark square-wave cycles, the COX/Cyd mutant displayed impaired growth and was completely photobleached after approximately 2 d. In contrast, use of sinusoidal light/dark cycles to simulate natural diurnal conditions resulted in little photobleaching, although growth was slower. Under high-light/dark square-wave cycles, the COX/Cyd mutant suffered a significant loss of photosynthetic efficiency during dark periods, a greater level of oxidative stress, and reduced glycogen degradation compared with the wild type. The mutant was susceptible to photoinhibition under pulsing but not constant light. These findings confirm a role for thylakoid-localized terminal oxidases in efficient dark respiration, reduction of oxidative stress, and accommodation of sudden light changes, demonstrating the strong selective pressure to maintain linked photosynthetic and respiratory electron chains within the thylakoid membrane. To our knowledge, this study is the first to report a phenotypic difference in growth between terminal oxidase mutants and wild-type cells and highlights the need to examine mutant phenotypes under a range of conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The physiological responses of Nitzschia palea Kutzing, a freshwater diatom, to elevated CO2 were investigated and compared with those of a marine diatom, Chaetoceros muelleri Lemmermann previously reported. Elevated CO2 concentration to 700 mu l/L increased the dissolved inorganic carbon (DIC) and lowered the pH in the cultures of N. palea, thus enhancing the growth by 4%-20% during the whole growth period. High CO2-grown N. palea cells showed lower levels of dark respiration rates and higher I (k) values. Light-saturated photosynthetic rates and photosynthetic efficiencies decreased in N. palea with the doubling CO2 concentration in airflow to the bottom of cultures, although the doubling CO2 concentration in airflow to the surface cultures had few effects on these two photosynthetic parameters. N. palea cells were found to be capable of using HCO3 (-) in addition to gaseous CO2, and the CO2 enrichment decreased their affinity for HCO3 (-) and CO2. Although doubled CO2 level would enhance the biomass of N. palea and C. muelleri to different extents, compared with the marine diatom, it had a significant effect on the specific growth rates of N. palea. In addition, the responses of photosynthetic parameters of N. palea to doubled CO2 concentration were almost opposite to those of C. muelleri.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intertidal seaweeds experience periodical desiccation and rehydration to different extents due to the tidal cycles and their vertical distributions. Their photosynthetic recovery process during the rehydration may show different patterns among the seaweeds from different zonations or depths at intertidal zone. In this study 12 species of seaweeds collected from the upper, middle, lower and sublittoral zones were examined. The relationship of the photosynthetic recovery to vertical distribution was assessed by comparing their patterns of photosynthetic and respiratory performances after rehydration following desiccation. Both the photosynthesis and dark respiration declined during emersion, showing certain degrees of recovery after re-immersion into seawater for most species, but the extents were markedly different from one species to the other. The species from upper intertidal zone after being rehydrated for 1 hour, following 2 hours of desiccation, achieved 100 % recovery of their initial physiological activity, while most of the lower or sublittoral species did not achieve full recovery. It is the ability to withstand desiccation stress (fast recovery during rehydration), but not that to avoid desiccation (water retaining ability) that determines the distribution of intertidal seaweeds. Such physiological behavior during rehydration after desiccation reflects the adaptive strategy of intertidal seaweeds against desiccation and their capability of primary production in the process of rehydration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Intertidal marine macroalgae experience periodical exposures during low tide due to their zonational distribution. The duration of such emersion leads to different exposures of the plants to light and aerial CO2, which then affect the physiology of them to different extents. The ecophysiological responses to light and CO2 were investigated during emersion in two red algae Gloiopeltis furcata and Gigartina intermedia, and two brown algae Petalonia fascia and Sargassum hemiphyllum, growing along the Shantou coast of China. The light-saturated net photosynthesis in G. furcata and P. fascia showed an increase followed by slightly desiccation, whereas that in G. intermedia and S. hemiphyllum exhibited a continuous decrease with water loss. In addition, the upper-zonated G. furcata and P. fascia, exhibited higher photosynthetic tolerance to desiccation and required higher light level to saturate their photosynthesis than the lower-zonated G. intemedia and S. hemiphyllum. Desiccation had less effect on dark respiration in these four algae compared with photosynthesis. The light-saturated net photosynthesis increased with increased CO2 concentrations, being saturated at CO2 concentrations higher than the present atmospheric level in G. furcata, G. intermedia and S. hemiphyllum during emersion. It was evident that the relative enhancement of photosynthesis by elevated CO, in those three algae increased, though the absolute values of photosynthetic enhancement owing to CO2 increase were reduced when the desiccation statuses became more severe. However, in the case of desiccated P. fascia (water loss being greater than 20 %), light saturated net photosynthesis was saturated with current ambient atmospheric CO2 level. It is proposed that increasing atmospheric CO2 will enhance the daily photosynthetic production in intertidal macroalgae by varied extents that were related to the species and zonation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The growth and photosynthesis of Alexandrium tamarense (Lebour) Balech in different nutrient conditions were investigated. Low nitrate level (0.0882 mmol/L) resulted in the highest average growth rate from day 0 to day 10 (4.58 x 10(2) cells mL(-1) d(-1)), but the lowest cell yield (5420 cells mL(-1)) in three nitrate level cultures. High nitrate-grown cells showed lower levels of chlorophyll a-specific and cell-specific light-saturated photosynthetic rate (P-m(chl a) and P-m(cell)), dark respiration rate (R-d(chl a) and R-d(cell)) and chlorophyll a-specific apparent photosynthetic efficiency (alpha(chl a)) than was seen for low nitrate-grown cells; whereas the cells became light saturated at higher irradiance at low nitrate condition. When cultures at low nitrate were supplemented with nitrate at 0.7938 mmol/L in late exponential growth phase, or with nitrate at 0.7938 mmol/L and phosphate at 0.072 mmol/L in stationary growth phase, the cell yield was drastically enhanced, a 7-9 times increase compared with non-supplemented control culture, achieving 43 540 cells mL(-1) and 52 300 cells mL(-1), respectively; however, supplementation with nitrate in the stationary growth phase or with nitrate and phosphate in the late exponential growth phase increased the cell yield by no more than 2 times. The results suggested that continuous low level of nitrate with sufficient supply of phosphate may facilitate the growth of A. tamarense.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microcoleus vaginatus isolated from a desert algal crust of Shapotou was cultured in BG-11 medium containing 0.2mol l(-1) NaCl or 0.2mol l(-1) NaCl plus 100mg l(-1) sucrose, extracellular polymeric substances (EPS) or hot water-soluble polysaccharides (HWP), respectively. Photosynthetic oxygen evolution rates, photosystem 11 activity (Fv/Fm) and dark respiration of NaCl-stressed cells were enhanced significantly by the added sucrose or EPS under salt stress conditions (0.2mol l(-1) NaCl). Compared with cells treated with salt alone, sodium contents in cells reduced significantly; the content of cellular total carbohydrate did not change, and intracellular sucrose, water-soluble sugar increased significantly following the addition of exogenous carbohydrates. Sucrose synthase (SS) activity of NaCl-stressed cells increased following the addition of sucrose, and sucrose phosphate synthase (SPS) activity of NaCl-stressed cells increased following the addition of exogenous sucrose, EPS or HWP compared with cells stressed with NaCl only. The results suggested that the extruded EPS might be re-absorbed by cells of M. vaginatus as carbon source, they could increase salt tolerance of M. vaginatus through the changes of carbohydrate metabolism and the selective uptake of sodium ions. (C) 2003 Elsevier Science Ltd. All rights reserved.