981 resultados para dark energy
Resumo:
Recently, it has been shown that the inclusion of higher signal harmonics in the inspiral signals of binary supermassive black holes (SMBH) leads to dramatic improvements in the parameter estimation with Laser Interferometer Space Antenna (LISA). In particular, the angular resolution becomes good enough to identify the host galaxy or galaxy cluster, in which case the redshift can be determined by electromagnetic means. The gravitational wave signal also provides the luminosity distance with high accuracy, and the relationship between this and the redshift depends sensitively on the cosmological parameters, such as the equation-of-state parameter w = p(DE)/rho(DE) of dark energy. Using binary SMBH events at z < 1 with appropriate masses and orientations, one would be able to constrain w to within a few per cent. We show that, if the measured sky location is folded into the error analysis, the uncertainty on w goes down by an additional factor of 2-3, leaving weak lensing as the only limiting factor in using LISA as a dark energy probe.
Resumo:
Aims We combine measurements of weak gravitational lensing from the CFHTLS-Wide survey, supernovae Ia from CFHT SNLS and CMB anisotropies from WMAP5 to obtain joint constraints on cosmological parameters, in particular, the dark-energy equation-of-state parameter w. We assess the influence of systematics in the data on the results and look for possible correlations with cosmological parameters. Methods We implemented an MCMC algorithm to sample the parameter space of a flat CDM model with a dark-energy component of constant w. Systematics in the data are parametrised and included in the analysis. We determine the influence of photometric calibration of SNIa data on cosmological results by calculating the response of the distance modulus to photometric zero-point variations. The weak lensing data set is tested for anomalous field-to-field variations and a systematic shape measurement bias for high-redshift galaxies. Results Ignoring photometric uncertainties for SNLS biases cosmological parameters by at most 20% of the statistical errors, using supernovae alone; the parameter uncertainties are underestimated by 10%. The weak-lensing field-to-field variance between 1 deg2-MegaCam pointings is 5-15% higher than predicted from N-body simulations. We find no bias in the lensing signal at high redshift, within the framework of a simple model, and marginalising over cosmological parameters. Assuming a systematic underestimation of the lensing signal, the normalisation increases by up to 8%. Combining all three probes we obtain -0.10 < 1 + w < 0.06 at 68% confidence ( -0.18 < 1 + w < 0.12 at 95%), including systematic errors. Our results are therefore consistent with the cosmological constant . Systematics in the data increase the error bars by up to 35%; the best-fit values change by less than 0.15.
Resumo:
Acceleration of the universe has been established but not explained. During the past few years precise cosmological experiments have confirmed the standard big bang scenario of a flat universe undergoing an inflationary expansion in its earliest stages, where the perturbations are generated that eventually form into galaxies and other structure in matter, most of which is non-baryonic dark matter. Curiously, the universe has presently entered into another period of acceleration. Such a result is inferred from observations of extra-galactic supernovae and is independently supported by the cosmic microwave background radiation and large scale structure data. It seems there is a positive cosmological constant speeding up the universal expansion of space. Then the vacuum energy density the constant describes should be about a dozen times the present energy density in visible matter, but particle physics scales are enormously larger than that. This is the cosmological constant problem, perhaps the greatest mystery of contemporary cosmology. In this thesis we will explore alternative agents of the acceleration. Generically, such are called dark energy. If some symmetry turns off vacuum energy, its value is not a problem but one needs some dark energy. Such could be a scalar field dynamically evolving in its potential, or some other exotic constituent exhibiting negative pressure. Another option is to assume that gravity at cosmological scales is not well described by general relativity. In a modified theory of gravity one might find the expansion rate increasing in a universe filled by just dark matter and baryons. Such possibilities are taken here under investigation. The main goal is to uncover observational consequences of different models of dark energy, the emphasis being on their implications for the formation of large-scale structure of the universe. Possible properties of dark energy are investigated using phenomenological paramaterizations, but several specific models are also considered in detail. Difficulties in unifying dark matter and dark energy into a single concept are pointed out. Considerable attention is on modifications of gravity resulting in second order field equations. It is shown that in a general class of such models the viable ones represent effectively the cosmological constant, while from another class one might find interesting modifications of the standard cosmological scenario yet allowed by observations. The thesis consists of seven research papers preceded by an introductory discussion.
Resumo:
In this work the collapsing process of a spherically symmetric star, made of dust cloud, in the background of dark energy is studied for two different gravity theories separately, i.e., DGP Brane gravity and Loop Quantum gravity. Two types of dark energy fluids, namely, Modified Chaplygin gas and Generalised Cosmic Chaplygin gas are considered for each model. Graphs are drawn to characterize the nature and the probable outcome of gravitational collapse. A comparative study is done between the collapsing process in the two different gravity theories. It is found that in case of dark matter, there is a great possibility of collapse and consequent formation of Black hole. In case of dark energy possibility of collapse is far lesser compared to the other cases, due to the large negative pressure of dark energy component. There is an increase in mass of the cloud in case of dark matter collapse due to matter accumulation. The mass decreases considerably in case of dark energy due to dark energy accretion on the cloud. In case of collapse with a combination of dark energy and dark matter, it is found that in the absence of interaction there is a far better possibility of formation of black hole in DGP brane model compared to Loop quantum cosmology model.
Resumo:
Future space-based gravity wave (GW) experiments such as the Big Bang Observatory (BBO), with their excellent projected, one sigma angular resolution, will measure the luminosity distance to a large number of GW sources to high precision, and the redshift of the single galaxies in the narrow solid angles towards the sources will provide the redshifts of the gravity wave sources. One sigma BBO beams contain the actual source in only 68% of the cases; the beams that do not contain the source may contain a spurious single galaxy, leading to misidentification. To increase the probability of the source falling within the beam, larger beams have to be considered, decreasing the chances of finding single galaxies in the beams. Saini et al. T.D. Saini, S.K. Sethi, and V. Sahni, Phys. Rev. D 81, 103009 (2010)] argued, largely analytically, that identifying even a small number of GW source galaxies furnishes a rough distance-redshift relation, which could be used to further resolve sources that have multiple objects in the angular beam. In this work we further develop this idea by introducing a self-calibrating iterative scheme which works in conjunction with Monte Carlo simulations to determine the luminosity distance to GW sources with progressively greater accuracy. This iterative scheme allows one to determine the equation of state of dark energy to within an accuracy of a few percent for a gravity wave experiment possessing a beam width an order of magnitude larger than BBO (and therefore having a far poorer angular resolution). This is achieved with no prior information about the nature of dark energy from other data sets such as type Ia supernovae, baryon acoustic oscillations, cosmic microwave background, etc. DOI:10.1103/PhysRevD.87.083001
Resumo:
In this work we investigate if a small fraction of quarks and gluons, which escaped hadronization and survived as a uniformly spread perfect fluid, can play the role of both dark matter and dark energy. This fluid, as developed in [1], is characterized by two main parameters: beta, related to the amount of quarks and gluons which act as dark matter; and gamma, acting as the cosmological constant. We explore the feasibility of this model at cosmological scales using data from type Ia Supernovae (SNeIa), Long Gamma-Ray Bursts (LGRB) and direct observational Hubble data. We find that: (i) in general, beta cannot be constrained by SNeIa data nor by LGRB or H(z) data; (ii) gamma can be constrained quite well by all three data sets, contributing with approximate to 78% to the energy matter content; (iii) when a strong prior on (only) baryonic matter is assumed, the two parameters of the model are constrained successfully. (C) 2014 The Authors. Published by Elsevier B.V.
Resumo:
We reconstruct the interaction rate between dark matter and the holographic dark energy with the parametrized equation of states and the future event horizon as the infrared cutoff length. It is shown that the observational constraints from the 192 type Ia Supernovae (SnIa) and baryon acoustic oscillation (BAO) measurement permit the negative interaction in the wide region. Moreover, the usual phenomenological descriptions cannot describe the reconstructed interaction well for many cases. The other possible interaction is also discussed.
Resumo:
The negative pressure accompanying gravitationally-induced particle creation can lead to a cold dark matter (CDM) dominated, accelerating Universe (Lima et al. 1996 [1]) without requiring the presence of dark energy or a cosmological constant. In a recent study, Lima et al. 2008 [2] (LSS) demonstrated that particle creation driven cosmological models are capable of accounting for the SNIa observations [3] of the recent transition from a decelerating to an accelerating Universe, without the need for Dark Energy. Here we consider a class of such models where the particle creation rate is assumed to be of the form Gamma = beta H + gamma H(0), where H is the Hubble parameter and H(0) is its present value. The evolution of such models is tested at low redshift by the latest SNe Ia data provided by the Union compilation [4] and at high redshift using the value of z(eq), the redshift of the epoch of matter - radiation equality, inferred from the WMAP constraints on the early Integrated Sachs-Wolfe (ISW) effect [5]. Since the contributions of baryons and radiation were ignored in the work of LSS, we include them in our study of this class of models. The parameters of these more realistic models with continuous creation of CDM are constrained at widely-separated epochs (z(eq) approximate to 3000 and z approximate to 0) in the evolution of the Universe. The comparison of the parameter values, {beta, gamma}, determined at these different epochs reveals a tension between the values favored by the high redshift CMB constraint on z(eq) from the ISW and those which follow from the low redshift SNIa data, posing a potential challenge to this class of models. While for beta = 0 this conflict is only at less than or similar to 2 sigma, it worsens as beta increases from zero.
Resumo:
Models of dynamical dark energy unavoidably possess fluctuations in the energy density and pressure of that new component. In this paper we estimate the impact of dark energy fluctuations on the number of galaxy clusters in the Universe using a generalization of the spherical collapse model and the Press-Schechter formalism. The observations we consider are several hypothetical Sunyaev-Zel`dovich and weak lensing (shear maps) cluster surveys, with limiting masses similar to ongoing (SPT, DES) as well as future (LSST, Euclid) surveys. Our statistical analysis is performed in a 7-dimensional cosmological parameter space using the Fisher matrix method. We find that, in some scenarios, the impact of these fluctuations is large enough that their effect could already be detected by existing instruments such as the South Pole Telescope, when priors from other standard cosmological probes are included. We also show how dark energy fluctuations can be a nuisance for constraining cosmological parameters with cluster counts, and point to a degeneracy between the parameter that describes dark energy pressure on small scales (the effective sound speed) and the parameters describing its equation of state.
Resumo:
We investigate the influence of ail interaction between dark energy and dark matter upon the dynamics of galaxy clusters. We obtain file general Layser-Irvine equation in the presence of interactions, and find how, in that case. the virial theorem stands corrected. Using optical, X-ray and weak lensing data from 33 relaxed galaxy clusters, we put constraints on the strength of the coupling between the dark sectors. Available data Suggests that this coupling is small but positive, indicating that dark energy might be decaying into dark matter. Systematic effects between the several mass estimates, however, should be better known, before definitive conclusions oil the magnitude and significance of this coupling could be established. (C) 2009 Published by Elsevier B.V.
Resumo:
We examine different phenomenological interaction models for Dark Energy and Dark Matter by performing statistical joint analysis with observational data arising from the 182 Gold type la supernova samples, the shift parameter of the Cosmic Microwave Background given by the three-year Wilkinson Microwave Anisotropy Probe observations, the baryon acoustic oscillation measurement from the Sloan Digital Sky Survey and age estimates of 35 galaxies. Including the time-dependent observable, we add sensitivity of measurement and give complementary results for the fitting. The compatibility among three different data sets seem to imply that the coupling between dark energy and dark matter is a small positive value, which satisfies the requirement to solve the coincidence problem and the second law of thermodynamics, being compatible with previous estimates. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We present a thermodynamical description of the interaction between holographic dark energy and dark matter. If holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium. A small interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. From this correction we obtain a physical expression for the interaction which is consistent with phenomenological descriptions and passes reasonably well the observational tests: (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We discuss an interacting tachyonic dark energy model in the context of the holographic principle. The potential of the holographic tachyon field in interaction with dark matter is constructed. The model results are compared with CMB shift parameter, baryonic acoustic oscilations, lookback time and the Constitution supernovae sample. The coupling constant of the model is compatible with zero, but dark energy is not given by a cosmological constant.
Resumo:
We discuss modified gravity which includes negative and positive powers of curvature and provides gravitational dark energy. It is shown that in GR plus a term containing a negative power of curvature, cosmic speed-up may be achieved while the effective phantom phase (with w less than -1) follows when such a term contains a fractional positive power of curvature. Minimal coupling with matter makes the situation more interesting: even 1/R theory coupled with the usual ideal fluid may describe the (effective phantom) dark energy. The account of the R(2) term (consistent modified gravity) may help to escape cosmic doomsday.
Resumo:
Models with interacting dark energy can alleviate the cosmic coincidence problem by allowing dark matter and dark energy to evolve in a similar fashion. At a fundamental level, these models are specified by choosing a functional form for the scalar potential and for the interaction term. However, in order to compare to observational data it is usually more convenient to use parametrizations of the dark energy equation of state and the evolution of the dark matter energy density. Once the relevant parameters are fitted, it is important to obtain the shape of the fundamental functions. In this paper I show how to reconstruct the scalar potential and the scalar interaction with dark matter from general parametrizations. I give a few examples and show that it is possible for the effective equation of state for the scalar field to cross the phantom barrier when interactions are allowed. I analyze the uncertainties in the reconstructed potential arising from foreseen errors in the estimation of fit parameters and point out that a Yukawa-like linear interaction results from a simple parametrization of the coupling.