41 resultados para dacite
Resumo:
We report the first U-Pb baddeleyite/zircon date for a felsic volcanic rock from the Parana Large Igneous Province in south Brazil. The new date of 134.3 +/- 0.8 Ma for a hypocrystalline Chapeco-type dacite from Ourinhos (northern Parana basin) is an important regional time marker for the onset of flood basalt volcanism in the northern and western portion of the province. The dated dacite was erupted onto basement rocks and is overlain by a high-Ti basalt sequence, interpreted to be correlative with Pitanga basalts elsewhere. This new U-Pb date for the Ourinhos dacite is consistent with the local stratigraphy being slightly older than the few reliable step-heating (40)Ar/(39)Ar dates currently available for overlying high-Ti basalts (133.6-131.5 Ma). This indicates an similar to 3 Ma time span for the building of the voluminous high-Ti lava sequence of the Parana basin. On the other hand, it overlaps the (40)Ar/(39)Ar dates (134.8-134.1 Ma) available for the stratigraphically older low-Ti basalt (Gramado + Esmeralda types) and dacite-rhyolite (Palmas type) sequences from South Brazil, which is consistent with the short-lived character of this volcanism and its rapid succession by the high-Ti sequence. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
A geochemical, mineralogical, and isotopic database comprising 75 analyses of Ocean Drilling Program (ODP) Leg 193 samples has been prepared, representing the variable dacitic volcanic facies and alteration types observed in drill core from the subsurface of the PACMANUS hydrothermal system (Table T1. The data set comprises major elements, trace and rare earth elements (REE), various volatiles (S, F, Cl, S, SO4, CO2, and H2O), and analyses of 18O and 86Sr/87Sr for bulk rock and mineral separates (anhydrite). Furthermore, normative mineral proportions have been calculated based on the results of X-ray diffraction (XRD) analysis (Table T2) using the SOLVER function of the Microsoft Excel program. Several of the samples analyzed consist of mesoscopically distinctive domains, and separate powders were generated to investigate these hand specimen-scale heterogeneities. Images of all the samples are collated in Figure F1, illustrating the location of each powder analyzed and documenting which measurements were performed.
Resumo:
The capacity of natural zeolites and its host rock (dacite) to remove Pb2+ and Cr3+ from aqueous solutions has been investigated. Results showed that both samples prefer to remove Pb2+ instead of Cr3+. Almost 100% of Pb2+ was removed from solutions with concentration until 50 mg L-1 and 100 mg L-1 of this metal, respectively by dacite and zeolite. The equilibrium of metals adsorption process was reached during the first 30 min by both materials. Na+ can be used to recover Pb2+, but not to remove Cr3+ from the treated samples. The Sips model showed a good fit for experimental data of this study.
Resumo:
Quantitative laser ablation (LA)-ICP-MS analyses of fluid inclusions, trace element chemistry of sulfides, stable isotope (S), and Pb isotopes have been used to discriminate the formation of two contrasting mineralization styles and to evaluate the origin of the Cu and Au at Mt Morgan. The Mt Morgan Au-Cu deposit is hosted by Devonian felsic volcanic rocks that have been intruded by multiple phases of the Mt Morgan Tonalite, a low-K, low-Al2O3 tonalite-trondhjemite-dacite (TTD) complex. An early, barren massive sulfide mineralization with stringer veins is conforming to VHMS sub-seafloor replacement processes, whereas the high-grade Au-Cu. ore is associated with a later quartz-chalcopyrite-pyrite stock work mineralization that is related to intrusive phases of the Tonalite complex. LA-ICP-MS fluid inclusion analyses reveal high As (avg. 8850 ppm) and Sb (avg. 140 ppm) for the Au-Cu mineralization and 5 to 10 times higher Cu concentration than in the fluids associated with the massive pyrite mineralization. Overall, the hydrothermal system of Mt Morgan is characterized by low average fluid salinities in both mineralization styles (45-80% seawater salinity) and temperatures of 210 to 270 degreesC estimated from fluid inclusions. Laser Raman Spectroscopic analysis indicates a consistent and uniform array Of CO2-bearing fluids. Comparison with active submarine hydrothermal vents shows an enrichment of the Mt Morgan fluids in base metals. Therefore, a seawater-dominated fluid is assumed for the barren massive sulfide mineralization, whereas magmatic volatile contributions are implied for the intrusive related mineralization. Condensation of magmatic vapor into a seawater-dominated environment explains the CO2 occurrence, the low salinities, and the enriched base and precious metal fluid composition that is associated with the Au-Cu. mineralization. The sulfur isotope signature of pyrite and chalcopyrite is composed of fractionated Devonian seawater and oxidized magmatic fluids or remobilized sulfur from existing sulfides. Pb isotopes indicate that Au and Cu. originated from the Mt Morgan intrusions and a particular volcanic strata that shows elevated Cu background. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The unexpected discovery of a small outcrop of igneous rock isolated within an extensive outcrop of Neogene and Quaternary sediments called for the attention of CEPUNL's researchers. The rock is a dacite whose Rb-Sr age (C. A. and M. H. C.) is 291 M. y. upper Carboniferous. Hence the dacite may be related to volcanism in the Santa Suzana tectonic basin.
Resumo:
Samples of volcanic rocks from Alboran Island, the Alboran Sea floor and from the Gourougou volcanic centre in northern Morocco have been analyzed for major and trace elements and Sr-Nd isotopes to test current theories on the tectonic geodynamic evolution of the Alboran Sea. The Alboran Island samples are low-K tholeiitic basaltic andesites whose depleted contents of HFS elements (similar to0.5xN-MORB), especially Nb (similar to0.2xN-MORB), show marked geochemical parallels with volcanics from immature intra-oceanic arcs and back-arc basins. Several of the submarine samples have similar compositions, one showing low-Ca boninite affinity. Nd-143/Nd-144 ratios fall in the same range as many island-arc and back-arc basin samples, whereas Sr-87/Sr-86 ratios (on leached samples) are somewhat more radiogenic. Our data point to active subduction taking place beneath the Alboran region in Miocene times, and imply the presence of an associated back-arc spreading centre. Our sea floor suite includes a few more evolved dacite and rhyolite samples with (Sr-87/Sr-86)(0) up to 0.717 that probably represent varying degrees of crustal melting. The shoshonite and high-K basaltic andesite lavas from Gourougou have comparable normalized incompatible-element enrichment diagrams and Ce/Y ratios to shoshonitic volcanics from oceanic island arcs, though they have less pronounced Nb deficits. They are much less LIL- and LREE-enriched than continental arc analogues and post-collisional shoshonites from Tibet. The magmas probably originated by melting in subcontinental lithospheric mantle that had experienced negligible subduction input. Sr-Nd isotope compositions point to significant crustal contamination which appears to account for the small Nb anomalies. The unmistakable supra-subduction zone (SSZ) signature shown by our Alboran basalts and basaltic andesite samples refutes geodynamic models that attribute all Neogene volcanism in the Alboran domain to decompression melting of upwelling asthenosphere arising from convective thinning of over-thickened lithosphere. Our data support recent models in which subsidence is caused by westward rollback of an eastward-dipping subduction zone beneath the westemmost Mediterranean. Moreover, severance of the lithosphere at the edges of the rolling-back slab provides opportunities for locally melting lithospheric mantle, providing a possible explanation for the shoshonitic volcanism seen in northern Morocco and more sporadically in SE Spain. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The Guelb Moghrein Fe oxide-Cu-Au-Co deposit is located at the western boundary of the West African craton in NW Mauritania. The wall rocks to the mineralization represent a meta-volcanosedimentary succession typical of Archaean greenstone belts. Two types of meta-volcanic rocks are distinguished: (1) volcanoclastic rocks of rhyodacite-dacite composition (Sainte Barbe volcanic unit), which form the stratigraphic base; (2) tholeiitic andesites-basalts (Akjoujt meta-basalt unit). The trace element signature of both types is characteristic of a volcanic arc setting. A small meta-pelitic division belongs to the Sainte Barbe volcanic unit. A meta-carbonate body, which contains the mineralization, forms a tectonic lens in the Akjoujt meta-basalt unit. It can be defined by the high X(mg) (=36) of Fe-Mg carbonate, the REE pattern and the delta(13)C values of -18 to -17 parts per thousand as a marine precipitate similar to Archaean banded iron formation (BIF). Additionally, small slices of Fe-Mg clinoamphibole-chlorite schist in the meta-carbonate show characteristics of marine shale. This assemblage, therefore, does not represent an alteration product, but represents an iron formation unit deposited on a continental shelf, which probably belongs to the Lembeitih Formation. The hydrothermal mineralization at 2492 Ma was contemporaneous with regional D(2) thrusting of the Sainte Barbe volcanic unit and imbrications of the meta-carbonate in the upper greenschist facies. This resulted in the formation of an ore breccia in the meta-carbonate, which is enriched in Fe, Ni, Co, Cu, Bi, Mo, As and Au. Massive sulphide ore breccia contains up to 20 wt% Cu. The ore fluid was aqueous-carbonic in nature and either changed its composition from a Mg-rich oxidizing to an Fe-rich reducing fluid or the two fluid types mixed at the trap site. All lithologies at Guelb Moghrein were deformed by D(3) thrusting to the east in the lower greenschist facies. The mobility of REE in the retrogressed rocks explains the formation of a second generation of hydrothermal monazite, which was dated at c. 1742 Ma. Archaean rocks of the West African craton extend to the west to Guelb Moghrein. The active continental margin was deformed and mineralized in the Late Archaean-Early Proterozoic and again reactivated in the Mid-Proterozoic and Westphalian, showing that the western boundary of the craton was reactivated several times.
Resumo:
To evaluate the role of garnet and amphibole fractionation at conditions relevant for the crystallization of magmas in the roots of island arcs, a series of experiments were performed on a synthetic andesite at conditions ranging from 0.8 to 1.2 GPa, 800-1,000 degrees C and variable H2O contents. At water undersaturated conditions and fO(2) established around QFM, garnet has a wide stability field. At 1.2 GPa garnet ? amphibole are the high-temperature liquidus phases followed by plagioclase at lower temperature. Clinopyroxene reaches its maximal stability at H2O-contents <= 9 wt% at 950 degrees C and is replaced by amphibole at lower temperature. The slopes of the plagioclase-in boundaries are moderately negative in T-XH2O space. At 0.8 GPa, garnet is stable at magmatic H2O contents exceeding 8 wt% and is replaced by spinel at decreasing dissolved H2O. The liquids formed by crystallization evolve through continuous silica increase from andesite to dacite and rhyolite for the 1.2 GPa series, but show substantial enrichment in FeO/MgO for the 0.8 GPa series related to the contrasting roles of garnet and amphibole in fractionating Fe-Mg in derivative liquids. Our experiments indicate that the stability of igneous garnet increases with increasing dissolved H2O in silicate liquids and is thus likely to affect trace element compositions of H2O-rich derivative arc volcanic rocks by fractionation. Garnet-controlled trace element ratios cannot be used as a proxy
Resumo:
The breccia-hosted epithermal Au-Ag deposit of Rosia Montana is located 7 kin northeast of Abrud, in the northern part of the South Apuseni Mountains, Romania. Estimated total reserves of 214.91 million metric toils (Mt) of ore at 1.46 g/t An and 6.9 g/t Ag (10.1 Moz of An and 47.6 Moz of Ag) make Rosia Montana one of the largest gold deposits in Europe. At this location, Miocene calc-alkaline magmatic and hydrothermal activity was associated with local extensional tectonics within a strike-slip regime related to the indentation of the Adriatic microplate into the European plate during the Carpathian orogenesis. The host rocks of the magmatic complex consist of pre-Mesozoic metamorphosed continental crust covered by Cretaceous turbiditic sediment (flysch). Magmatic activity at Rosia Montana and its surroundings occurred in several pulses and lasted about 7 m.y, Rosia Montana is a breccia-hosted epithermal system related to strong phreatomagmatic activity due to the shallow emplacement of the Montana dacite. The Montana dacite intruded Miocene volcaniclastic material (volcaniclastic breccias) and crops out at Cetate and Carnic Hills. Current mining is focused primarily on the Cetate open pit, which was mapped in detail, leading to the recognition of three distinct breccia bodies: the dacite breccia with a dominantly hydrothermal matrix, the gray polymict breccia with a greater proportion of sand-sized matrix support, and the black polymict breccia, which reached to the surface, contains carbonized tree trunks and has a dominantly barren elastic matrix. The hydrothermal alteration is pervasive. Adularia alteration with a phyllic overprint is ubiquitous; silicification and argillic alteration occur locally. Mineralization consists of quartz, adularia, carbonates (commonly Mn-rich), pyrite, Fe-poor sphalerite, galena, chalcopyrite, tetrahedrite, and native gold and occurs as disseminations, as well as in veins and filling vugs within the Montana dacite and the different breccias. The age of mineralization (12.85 +/- 0.07 Ma) was determined by Ar-40- Ar-39 dating on hydrothermal adularia crystals from vugs in the dacite breccia in the Cetate open pit. Microthermometric measurements of fluid inclusions in quartz phenocrysts from the Montana dacite revealed two fluid types that are absent from the hydrothermal breccia and must have been trapped at depth prior to dacite dome emplacement: brine inclusions (32-55 -wt % NaCl equiv, homogenizing at T-h > 460 degrees C) and intermediate density fluids (4.9-15.6 wt % NaCl equiv, T, between 345 degrees-430 degrees C). Secondary aqueous fluid inclusion assemblages in the phenocrysts have salinities of 0.2 to 2.2 wt percent NaCl equiv and T-h of 200 degrees to 280 degrees C. Fluid inclusion assemblages in hydrothermal quartz from breccias and veins have salinities of 0.2 to 3.4 wt percent NaCl equiv and T-h, from 200 degrees to 270 degrees C. The oxygen isotope composition of several zones of an ore-related epithermal quartz crystal indicate a very constant delta O-18 of 4.5 to 5.0 per mil for the mineralizing fluid, despite significant salinity and temperature variation over time. Following microthermometry, selected fluid inclusion assemblages were analyzed by laser ablation-inductively coupled-plasma mass spectrometry (LA-ICMS). Despite systematic differences in salinity between phenocryst-hosted fluids trapped at depth and fluids from quartz in the epithermal breccias, all fluids have overlapping major and trace cation ratios, including identical Na/K/Rb/Sr/Cs/Ba. Consistent with the constant near-magmatic oxygen isotope composition of the hydrothermal fluids, these data strongly indicate a common magmatic component of these chemically conservative solutes in all fluids. Cu, Pb, Zn, and Mn show variations in concentration relative to the relatively non-reactive alkalis, reflecting the precipitation of sulfide minerals together with An in the epithermal breccia, and possibly of Cu in an inferred subjacent porphyry environment. The magmatic-hydrothermal processes responsible for epithermal Au-Ag mineralization at Rosia Montana are, however, not directly related to the formation of the spatially associated porphyry Cu-Au deposit of Rosia Poieni, which occurred lout 3 m.y. later.
Resumo:
The capacity of natural zeolites and its host rock (dacite) to remove Pb2+ and Cr3+ from aqueous solutions has been investigated. Results showed that both samples prefer to remove Pb2+ instead of Cr3+. Almost 100% of Pb2+ was removed from solutions with concentration until 50 mg L-1 and 100 mg L-1 of this metal, respectively by dacite and zeolite. The equilibrium of metals adsorption process was reached during the first 30 min by both materials. Na+ can be used to recover Pb2+, but not to remove Cr3+ from the treated samples. The Sips model showed a good fit for experimental data of this study.
Resumo:
The Rio Apa Massif corresponds to the southeastern portion of the Amazonian Craton and crops out in the Mato Grosso do Sul State, Brazil. It is constituted by rocks of paleoproterozoic age of Rio Apa Complex, Alto Tererê Group and the plutonic-volcanic suites of the Amoguijá Group, subdivided in Alumiador Intrusive suits and Serra da Bocaina Volcanic. The Volcanic Suite is represented by São Francisco and Bocaina mountains and is constituted by terms of the composition of alkali - rhyolitic to rhyolitic, including in minor amounts riodacite, andesite and dacite. It consists of a variety of textual subvolcanic rocks, volcanic and varied volcanoclastics. The pyroclastic deposits are very expressive and consist of pyroclastic particle immerse in aphanitic matrix, fine grained or amorphous, where quartz, feldspar, chlorite, sericite, microlithes of carbonate, sparse spherulites and reliquiar volcanic glass can be distinguished. The pyroclastic rocks are represented by breccias, ignimbrites, agglomerate, tuffs, lapillistones and pumices and contain commonly vitroclasts, lithoclasts and crystalloclasts, pumices, fiammes, glass shards, spherulites, vesicles and amygdales. They are calc-alkaline rocks with dominant peraluminous character high to middle potassium series and define a sin-colisional dominant tectonic and are genetically associated to the evolution of the Amoguijá Magmatic Arc.
Resumo:
As formações Sobreiro e Santa Rosa são resultado de intensas atividades vulcânicas paleoproterozoicas na região de São Félix do Xingu (PA), SE do Cráton Amazônico. A Formação Sobreiro é composta por rochas de fácies de fluxo de lava andesítica, com dacito e riodacito subordinados, além de rochas que compõem a fácies vulcanoclástica, caracterizadas por tufo, lapilli-tufo e brecha polimítica maciça. Essas rochas exibem fenocristais de clinopiroxênio, anfibólio e plagioclásio em uma matriz microlítica ou traquítica. O clinopiroxênio é classificado predominantemente como augita, com diopsídio subordinado, e apresenta caracterísiticas geoquímicas de minerais gerados em rochas de arco magmático. O anfibólio, representado pela magnesiohastingsita, foi formado sob condições oxidantes e apresenta texturas de desequilíbrio, como bordas de oxidação vinculadas à degaseificação por alívio de pressão. As rochas da Formação Santa Rosa foram extravasadas em grandes fissuras crustais de direção NE-SW, têm características de evolução polifásica e compõem uma fácies de fluxo de lava riolítica e riodacítica e uma fácies vulcanoclástica de ignimbritos, lapilli-tufos, tufos de cristais félsicos e brechas polimíticas maciças. Diques métricos e stocks de pórfiros graníticos e granitoides equigranulares completam essa suíte. Fenocristais de feldspato potássico, plagioclásio e quartzo dispersos em matriz de quartzo e feldspato potássico intercrescidos ocorrem nessas rochas. Por meio de análises químicas pontuais dos fenocristais em microssonda eletrônica, foram estimadas as condições de pressão e temperatura de sua formação, sendo que o clinopiroxênio das rochas intermediárias da Formação Sobreiro indica profundidade de formação variável entre 58 e 17,5 km (17,5 - 4,5 kbar), a temperaturas entre 1.294 e 1.082 ºC, enquanto o anfibólio cristalizou-se entre 28 e 15 km (7,8 - 4,1 kbar), o que sugere uma evolução polibárica. Assim, propõe-se um modelo de geração de magma basáltico hidratado com base na fusão parcial de cunha mantélica e no acúmulo na crosta inferior em uma zona quente, a partir da qual os magmas andesíticos e dacíticos são formados pela assimilação de crosta continental e cristalização fracionada.