15 resultados para cytotoxins
Resumo:
Diarrhoea is one of the leading causes of morbidity and mortality in populations in developing countries and is a significant health issue throughout the world. Despite the frequency and the severity of the diarrhoeal disease, mechanisms of pathogenesis for many of the causative agents have been poorly characterised. Although implicated in a number of intestinal and extra-intestinal infections in humans, Plesiomonas shigelloides generally has been dismissed as an enteropathogen due to the lack of clearly demonstrated virulence-associated properties such as production of cytotoxins and enterotoxins or invasive abilities. However, evidence from a number of sources has indicated that this species may be the cause of a number of clinical infections. The work described in this thesis seeks to resolve this discrepancy by investigating the pathogenic potential of P. shigelloides using in vitro cell models. The focus of this research centres on how this organism interacts with human host cells in an experimental model. Very little is known about the pathogenic potential of P. shigel/oides and its mechanisms in human infections and disease. However, disease manifestations mimic those of other related microorganisms. Chapter 2 reviews microbial pathogenesis in general, with an emphasis on understanding the mechanisms resulting from infection with bacterial pathogens and the alterations in host cell biology. In addition, this review analyses the pathogenic status of a poorly-defined enteropathogen, P. shigelloides. Key stages of pathogenicity must occur in order for a bacterial pathogen to cause disease. Such stages include bacterial adherence to host tissue, bacterial entry into host tissues (usually required), multiplication within host tissues, evasion of host defence mechanisms and the causation of damage. In this study, these key strategies in infection and disease were sought to help assess the pathogenic potential of P. shigelloides (Chapter 3). Twelve isolates of P. shigelloides, obtained from clinical cases of gastroenteritis, were used to infect monolayers of human intestinal epithelial cells in vitro. Ultrastructural analysis demonstrated that P. shigelloides was able to adhere to the microvilli at the apical surface of the epithelial cells and also to the plasma membranes of both apical and basal surfaces. Furthermore, it was demonstrated that these isolates were able to enter intestinal epithelial cells. Internalised bacteria often were confined within vacuoles surrounded by single or multiple membranes. Observation of bacteria within membranebound vacuoles suggests that uptake of P. shigelloides into intestinal epithelial cells occurs via a process morphologically comparable to phagocytosis. Bacterial cells also were observed free in the host cell cytoplasm, indicating that P. shige/loides is able to escape from the surrounding vacuolar membrane and exist within the cytosol of the host. Plesiomonas shigelloides has not only been implicated in gastrointestinal infections, but also in a range of non-intestinal infections such as cholecystitis, proctitis, septicaemia and meningitis. The mechanisms by which P. shigelloides causes these infections are not understood. Previous research was unable to ascertain the pathogenic potential of P. shigel/oides using cells of non-intestinal origin (HEp-2 cells derived from a human larynx carcinoma and Hela cells derived from a cervical carcinoma). However, with the recent findings (from this study) that P. shigelloides can adhere to and enter intestinal cells, it was hypothesised, that P. shigel/oides would be able to enter Hela and HEp-2 cells. Six clinical isolates of P. shigelloides, which previously have been shown to be invasive to intestinally derived Caco-2 cells (Chapter 3) were used to study interactions with Hela and HEp-2 cells (Chapter 4). These isolates were shown to adhere to and enter both nonintestinal host cell lines. Plesiomonas shigelloides were observed within vacuoles surrounded by single and multiple membranes, as well as free in the host cell cytosol, similar to infection by P. shigelloides of Caco-2 cells. Comparisons of the number of bacteria adhered to and present intracellularly within Hela, HEp-2 and Caco-2 cells revealed a preference of P. shigelloides for Caco-2 cells. This study conclusively showed for the first time that P. shigelloides is able to enter HEp-2 and Hela cells, demonstrating the potential ability to cause an infection and/or disease of extra-intestinal sites in humans. Further high resolution ultrastructural analysis of the mechanisms involved in P. shigelloides adherence to intestinal epithelial cells (Chapter 5) revealed numerous prominent surface features which appeared to be involved in the binding of P. shige/loides to host cells. These surface structures varied in morphology from small bumps across the bacterial cell surface to much longer filaments. Evidence that flagella might play a role in bacterial adherence also was found. The hypothesis that filamentous appendages are morphologically expressed when in contact with host cells also was tested. Observations of bacteria free in the host cell cytosol suggests that P. shigelloides is able to lyse free from the initial vacuolar compartment. The vacuoles containing P. shigel/oides within host cells have not been characterised and the point at which P. shigelloides escapes from the surrounding vacuolar compartment has not been determined. A cytochemical detection assay for acid phosphatase, an enzymatic marker for lysosomes, was used to analyse the co-localisation of bacteria-containing vacuoles and acid phosphatase activity (Chapter 6). Acid phosphatase activity was not detected in these bacteria-containing vacuoles. However, the surface of many intracellular and extracellular bacteria demonstrated high levels of acid phosphatase activity, leading to the proposal of a new virulence factor for P. shigelloides. For many pathogens, the efficiency with which they adhere to and enter host cells is dependant upon the bacterial phase of growth. Such dependency reflects the timing of expression of particular virulence factors important for bacterial pathogenesis. In previous studies (Chapter 3 to Chapter 6), an overnight culture of P. shigelloides was used to investigate a number of interactions, however, it was unknown whether this allowed expression of bacterial factors to permit efficient P. shigelloides attachment and entry into human cells. In this study (Chapter 7), a number of clinical and environmental P. shigelloides isolates were investigated to determine whether adherence and entry into host cells in vitro was more efficient during exponential-phase or stationary-phase bacterial growth. An increase in the number of adherent and intracellular bacteria was demonstrated when bacteria were inoculated into host cell cultures in exponential phase cultures. This was demonstrated clearly for 3 out of 4 isolates examined. In addition, an increase in the morphological expression of filamentous appendages, a suggested virulence factor for P. shigel/oides, was observed for bacteria in exponential growth phase. These observations suggest that virulence determinants for P. shigel/oides may be more efficiently expressed when bacteria are in exponential growth phase. This study demonstrated also, for the first time, that environmental water isolates of P. shigelloides were able to adhere to and enter human intestinal cells in vitro. These isolates were seen to enter Caco-2 host cells through a process comparable to the clinical isolates examined. These findings support the hypothesis of a water transmission route for P. shigelloides infections. The results presented in this thesis contribute significantly to our understanding of the pathogenic mechanisms involved in P. shigelloides infections and disease. Several of the factors involved in P. shigelloides pathogenesis have homologues in other pathogens of the human intestine, namely Vibrio, Aeromonas, Salmonella, Shigella species and diarrhoeaassociated strains of Escherichia coli. This study emphasises the relevance of research into Plesiomonas as a means of furthering our understanding of bacterial virulence in general. As well it provides tantalising clues on normal and pathogenic host cell mechanisms.
Resumo:
The growth of solid tumours beyond a critical size is dependent upon angiogenesis, the formation of new blood vessels from an existing vasculature. Tumours may remain dormant at microscopic sizes for some years before switching to a mode in which growth of a supportive vasculature is initiated. The new blood vessels supply nutrients, oxygen, and access to routes by which tumour cells may travel to other sites within the host (metastasize). In recent decades an abundance of biological research has focused on tumour-induced angiogenesis in the hope that treatments targeted at the vasculature may result in a stabilisation or regression of the disease: a tantalizing prospect. The complex and fascinating process of angiogenesis has also attracted the interest of researchers in the field of mathematical biology, a discipline that is, for mathematics, relatively new. The challenge in mathematical biology is to produce a model that captures the essential elements and critical dependencies of a biological system. Such a model may ultimately be used as a predictive tool. In this thesis we examine a number of aspects of tumour-induced angiogenesis, focusing on growth of the neovasculature external to the tumour. Firstly we present a one-dimensional continuum model of tumour-induced angiogenesis in which elements of the immune system or other tumour-cytotoxins are delivered via the newly formed vessels. This model, based on observations from experiments by Judah Folkman et al., is able to show regression of the tumour for some parameter regimes. The modelling highlights a number of interesting aspects of the process that may be characterised further in the laboratory. The next model we present examines the initiation positions of blood vessel sprouts on an existing vessel, in a two-dimensional domain. This model hypothesises that a simple feedback inhibition mechanism may be used to describe the spacing of these sprouts with the inhibitor being produced by breakdown of the existing vessel's basement membrane. Finally, we have developed a stochastic model of blood vessel growth and anastomosis in three dimensions. The model has been implemented in C++, includes an openGL interface, and uses a novel algorithm for calculating proximity of the line segments representing a growing vessel. This choice of programming language and graphics interface allows for near-simultaneous calculation and visualisation of blood vessel networks using a contemporary personal computer. In addition the visualised results may be transformed interactively, and drop-down menus facilitate changes in the parameter values. Visualisation of results is of vital importance in the communication of mathematical information to a wide audience, and we aim to incorporate this philosophy in the thesis. As biological research further uncovers the intriguing processes involved in tumourinduced angiogenesis, we conclude with a comment from mathematical biologist Jim Murray, Mathematical biology is : : : the most exciting modern application of mathematics.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: The number of Escherichia coli in the gut of Crohn's disease (CD) patients is higher than that of normal subjects, but the virulence potential of these bacteria is not fully known. Previous studies have shown that these E. coli are closely related to extraintestinal pathogenic categories (ExPEC), are able to invade epithelial cells, and usually do not produce exotoxins. We report here the detection, in a CD patient, of an E. coli which belongs to a classical enteropathogenic (EPEC) serotype and displays virulence markers of enteroinvasive (EIEC), enteroaggregative (EAEC) and enterohemorrhagic (EHEC) pathotypes. Methods: The E. coli strain was isolated, in 2009, by classical bacteriological procedures from a 56 year old woman who underwent ileo-terminal resection 1 year before, due to intestinal obstruction. The bacterial characterization was carried out by in vitro adhesion and invasion assays to cultured epithelial cells and macrophages and screening by PCR to identify virulence genetic markers of diarrheogenic E. coli (DEC) and to detect one of the gene combinations which define the phylogroups of the E. coli reference (EcoR) collection. The strain was also tested for the ability to produce biofilm and shiga cytotoxins and had its whole genome sequenced by Ion Torrent Sequencing Technology. Results: The studied strain, which was detected both in ileum biopsies and the stools of the patient, displayed the aggregative adherence (AA) phenotype to Hep-2 cells and an ability to enter Caco-2 cells 3x as high as that of EIEC reference strain and 89% of that of the prototype AIEC LF82 strain. Although it could invade cultured macrophages, the strain was unable to replicate inside these cells. PCR screening revealed the presence of eae, aggR and stx1. Tests with bacterial culture supernatants in Vero cells demonstrating cytotoxicity suggested the production of Stx1. In addition, the strain revealed to be a strong biofilm producer, belonged to the B2 EcoR phylogroup, to the O126:H27 serogroup and to the multilocus sequencing type (MLST) ST3057. The 2 later features were deduced from the whole genome sequence of the strain. Conclusions: The characterization of this E. coli isolate from a CD patient revealed a combination of virulence markers of distinct DEC pathotypes, namely eae and stx1 of EHEC, AA, aggR and biofilm formation of EAEC, and invasiveness of EIEC. These features along with its serotype and phylogroup identity seem to suggest a potential to be involved in CD, an observation which should be tested with additional studies.
Resumo:
Clostridium difficile, der Auslöser der nosokomialen Antibiotika-assoziierten Durchfälle und der Pseudomembranösen Kolitis, besitzt zwei Hauptvirulenzfaktoren: die Toxine A und B. In vorangegangenen Veröffentlichungen wurde gezeigt, dass Toxin B durch einen zytosolischen Faktor der eukaryotischen Zielzelle während des Aufnahmeweges in die Zelle gespalten wird. Nur die N-terminale katalytische Domäne erreicht das Zytosol. Hierbei wurde davon ausgegangen, dass eine Protease der Zielzelle die Spaltung katalysiert. In dieser Arbeit konnte gezeigt werden, dass die Spaltung von Toxin B ein intramolekularer Prozess ist, der zytosolisches Inositolphosphat der Zielzelle als Kofaktor zur Aktivierung der intrinsischen Protease benötigt. Die Freisetzung der katalytischen Domäne durch Inositolphosphat-induzierte Spaltung ist nicht nur das Prinzip des Clostridium difficile Toxin B sondern auch des Toxin A, als auch des alpha Toxin von Clostridium novyi und das Letale Toxin von Clostridium sordellii. Der kovalente Inhibitor von Aspartatproteasen 1,2-epoxy-3-(p-nitrophenoxy)propan (EPNP), wurde dazu verwendet die intrinsische Protease von Toxin B zu blockieren und ermöglichte die Identifikation des katalytischen Zentrums. EPNP modifiziertes Toxin B verliert die intrinsische Proteaseaktivität und Zytotoxizität, aber wenn es direkt in das Zytosol der Wirtszelle injiziert ist, bleibt die Toxizität erhalten. Diese ist damit der erste Bericht eines bakteriellen Toxins, das eukaryotische Signale zur induzierten Autoproteolyse nutzt, um seine katalytisch-toxische Domäne in das Zytosol der Zielzelle freizusetzen. Durch diese Ergebnisse kann das Modell der Toxin-Prozessierung nun um einen weiteren entscheidenden Schritt vervollständigt werden.
Resumo:
Radiation is the primary modality of therapy for all commonly occurring malignant brain tumors, including medulloblastoma and glioblastoma. These two brain tumors, however, have a distinctly different response to radiation therapy. Medulloblastoma is very sensitive to radiation therapy, whereas glioblastoma is highly resistant, and the long-term survival of medulloblastoma patients exceeds 50%, while there are few long-term survivors among glioblastoma patients. p53-mediated apoptosis is thought to be an important mechanism mediating the cytotoxic response of tumors to radiotherapy. In this study, we compared the response to radiation of five cell lines that have wild-type p53: three derived from glioblastoma and two derived from medulloblastoma. We found that the medulloblastoma-derived cell lines underwent extensive radiation-induced apoptotic cell death, while those from glioblastomas did not exhibit significant radiation-induced apoptosis. p53-mediated induction of p21BAX is thought to be a key component of the pathway mediating apoptosis after the exposure of cells to cytotoxins, and the expression of mRNA encoding p21BAX was correlated with these cell lines undergoing radiation-induced apoptosis. The failure of p53 to induce p21BAX expression in glioblastoma-derived cell lines is likely to be of biologic significance, since inhibition of p21BAX induction in medulloblastoma resulted in a loss of radiation-induced apoptosis, while forced expression of p21BAX in glioblastoma was sufficient to induce apoptosis. The failure of p53 to induce p21BAX in glioblastoma-derived cell lines suggests a distinct mechanism of radioresistance and may represent a critical factor in determining therapeutic responsiveness to radiation in glioblastomas.
Resumo:
Select members of the bovine pancreatic ribonuclease A (RNase A) superfamily are potent cytotoxins. These cytotoxic ribonucleases enter the cytosol, where they degrade cellular RNA and cause cell death. Ribonuclease inhibitor (RI), a cytosolic protein, binds to members of the RNase A superfamily with inhibition constants that span 10 orders of magnitude. Here, we show that the affinity of a ribonuclease for RI plays an integral role in defining the potency of a cytotoxic ribonuclease. RNase A is not cytotoxic and binds RI with high affinity. Onconase, a cytotoxic RNase A homolog, binds RI with low affinity. To disrupt the RI-RNase A interaction, three RNase A residues (Asp-38, Gly-88, and Ala-109) that form multiple contacts with RI were replaced with arginine. Replacing Asp-38 and Ala-109 with an arginine residue has no effect on the RI–RNase interaction. In addition, these variants are not cytotoxic. In contrast, replacing Gly-88 with an arginine residue yields a ribonuclease (G88R RNase A) that retains catalytic activity in the presence of RI and is cytotoxic to a transformed cell line. Replacing Gly-88 with aspartate also yields a ribonuclease (G88D RNase A) with a decreased affinity for RI and cytotoxic activity. The cytotoxic potency of onconase, G88R RNase A, and G88D RNase A correlate with RI evasion. We conclude that ribonucleases that retain catalytic activity in the presence of RI are cytotoxins. This finding portends the development of a class of chemotherapeutic agents based on pancreatic ribonucleases.
Resumo:
Chemotherapy in the last century was characterized by cytotoxic drugs that did not discriminate between cancerous and normal cell types and were consequently accompanied by toxic side effects that were often dose limiting. The ability of differentiating agents to selectively kill cancer cells or transform them to a nonproliferating or normal phenotype could lead to cell- and tissue-specific drugs without the side effects of current cancer chemotherapeutics. This may be possible for a new generation of histone deacetylase inhibitors derived from amino acids. Structure-activity relationships are now reported for 43 compounds derived from 2-aminosuberic acid that kill a range of cancer cells, 26 being potent cytotoxins against MM96L melanoma cells (IC50 20 nM-1 mu M), while 17 were between 5- and 60-fold more selective in killing MM96L melanoma cells versus normal (neonatal foreskin fibroblasts, NFF) cells. This represents a 10- to 100-fold increase in potency and up to a 10-fold higher selectivity over previously reported compounds derived from cysteine (J. Med. Chem. 2004, 47, 2984). Selectivity is also an underestimate, because the normal cells, NFF, are rarely all killed by the drugs that also induce selective blockade of the cell cycle for normal but not cancer cells. Selected compounds were tested against a panel of human cancer cell lines (melanomas, prostate, breast, ovarian, cervical, lung, and colon) and found to be both selective and potent cytotoxins (IC50 20 nM-1 mu M). Compounds in this class typically inhibit human histone deacetylases, as evidenced by hyperacetylation of histones in both normal and cancer cells, induce expression of p21, and differentiate surviving cancer cells to a nonproliferating phenotype. These compounds may be valuable leads for the development of new chemotherapeutic agents.
Resumo:
The human NT2.D1 cell line was differentiated to form both a 1:2 co-culture of post-mitotic NT2 neuronal and NT2 astrocytic (NT2.N/A) cells and a pure NT2.N culture. The respective sensitivities to several test chemicals of the NT2.N/A, the NT2.N, and the NT2.D1 cells were evaluated and compared with the CCF-STTG1 astrocytoma cell line, using a combination of basal cytotoxicity and biochemical endpoints. Using the MTT assay, the basal cytotoxicity data estimated the comparative toxicities of the test chemicals (chronic neurotoxin 2,5-hexanedione, cytotoxins 2,3- and 3,4-hexanedione and acute neurotoxins tributyltin- and trimethyltin- chloride) and also provided the non-cytotoxic concentration-range for each compound. Biochemical endpoints examined over the non-cytotoxic range included assays for ATP levels, oxidative status (H2O2 and GSH levels) and caspase-3 levels as an indicator of apoptosis. although the endpoints did not demonstrate the known neurotoxicants to be consistently more toxic to the cell systems with the greatest number of neuronal properties, the NT2 astrocytes appeared to contribute positively to NT2 neuronal health following exposure to all the test chemicals. The NT2.N/A co-culture generally maintained superior ATP and GSH levels and reduced H2O2 levels in comparison with the NT2.N mono-culture. In addition, the pure NT2.N culture showed a significantly lower level of caspase-3 activation compared with the co-culture, suggesting NT2 astrocytes may be important in modulating the mode of cell death following toxic insult. Overall, these studies provide evidence that an in vitro integrated population of post-mitotic human neurons and astrocytes may offer significant relevance to the human in vivo heterogeneous nervous system, when initially screening compounds for acute neurotoxic potential.