985 resultados para cytotoxin-associated gene A
Resumo:
Melanoma-associated genes (MAGEs) encode tumor-specific antigens that can be recognized by CD8+ cytotoxic T lymphocytes. To investigate the interaction of the HLA-A1-restricted MAGE-1 peptide 161-169 (EADPT-GHSY) with HLA class I molecules, photoreactive derivatives were prepared by single amino acid substitution with N beta-[iodo-4-azidosalicyloyl]-L-2,3-diaminopropionic acid. These derivatives were tested for their ability to bind to, and to photoaffinity-label, HLA-A1 on C1R.A1 cells. Only the derivatives containing the photoreactive amino acid in position 1 or 7 fulfilled both criteria. Testing the former derivative on 14 lymphoid cell lines expressing over 44 different HLA class I molecules indicated that it efficiently photoaffinity-labeled not only HLA-A1, but possibility also HLA-A29 and HLA-B44. MAGE peptide binding by HLA-A29 and HLA-B44 was confirmed by photoaffinity labeling with photoreactive MAGE-3 peptide derivatives on C1R.A29 and C1R.B44 cells, respectively. The different photoaffinity labeling systems were used to access the ability of the homologous peptides derived from MAGE-1, -2, -3, -4a, -4b, -6, and -12 to bind to HLA-A1, HLA-A29, and HLA-B44. All but the MAGE-2 and MAGE-12 nonapeptides efficiently inhibited photoaffinity labeling of HLA-A1, which is in agreement with the known HLA-A1 peptide-binding motif (acidic residue in P3 and C-terminal tyrosine). In contrast, photoaffinity labeling of HLA-A29 was efficiently inhibited by these as well as by the MAGE-3 and MAGE-6 nonapeptides. Finally, the HLA-B44 photoaffinity labeling, unlike the HLA-A1 and HLA-A29 labeling, was inhibited more efficiently by the corresponding MAGE decapeptides, which is consistent with the reported HLA-B44 peptide-binding motif (glutamic acid in P2, and C-terminal tyrosine or phenylalanine). The overlapping binding of homologous MAGE peptides by HLA-A1, A29, and B44 is based on different binding principles and may have implications for immunotherapy of MAGE-positive tumors.
Resumo:
Candidate gene and genome-wide association studies have not identified common variants, which are reliably associated with depression. The recent identification of obesity predisposing genes that are highly expressed in the brain raises the possibility of their genetic contribution to depression. As variation in the intron 1 of the fat mass- and obesity-associated (FTO) gene contributes to polygenic obesity, we assessed the possibility that FTO gene may contribute to depression in a cross-sectional multi-ethnic sample of 6561 depression cases and 21 932 controls selected from the EpiDREAM, INTERHEART, DeCC (depression case-control study) and Cohorte Lausannoise (CoLaus) studies. Major depression was defined according to DSM IV diagnostic criteria. Association analyses were performed under the additive genetic model. A meta-analysis of the four studies showed a significant inverse association between the obesity risk FTO rs9939609 A variant and depression (odds ratio=0.92 (0.89, 0.97), P=3 × 10(-4)) adjusted for age, sex, ethnicity/population structure and body-mass index (BMI) with no significant between-study heterogeneity (I(2)=0%, P=0.63). The FTO rs9939609 A variant was also associated with increased BMI in the four studies (β 0.30 (0.08, 0.51), P=0.0064) adjusted for age, sex and ethnicity/population structure. In conclusion, we provide the first evidence that the FTO rs9939609 A variant may be associated with a lower risk of depression independently of its effect on BMI. This study highlights the potential importance of obesity predisposing genes on depression.
Resumo:
BackgroundBipolar disorder is a highly heritable polygenic disorder. Recent enrichment analyses suggest that there may be true risk variants for bipolar disorder in the expression quantitative trait loci (eQTL) in the brain.AimsWe sought to assess the impact of eQTL variants on bipolar disorder risk by combining data from both bipolar disorder genome-wide association studies (GWAS) and brain eQTL.MethodTo detect single nucleotide polymorphisms (SNPs) that influence expression levels of genes associated with bipolar disorder, we jointly analysed data from a bipolar disorder GWAS (7481 cases and 9250 controls) and a genome-wide brain (cortical) eQTL (193 healthy controls) using a Bayesian statistical method, with independent follow-up replications. The identified risk SNP was then further tested for association with hippocampal volume (n = 5775) and cognitive performance (n = 342) among healthy individuals.ResultsIntegrative analysis revealed a significant association between a brain eQTL rs6088662 on chromosome 20q11.22 and bipolar disorder (log Bayes factor = 5.48; bipolar disorder P = 5.85×10(-5)). Follow-up studies across multiple independent samples confirmed the association of the risk SNP (rs6088662) with gene expression and bipolar disorder susceptibility (P = 3.54×10(-8)). Further exploratory analysis revealed that rs6088662 is also associated with hippocampal volume and cognitive performance in healthy individuals.ConclusionsOur findings suggest that 20q11.22 is likely a risk region for bipolar disorder; they also highlight the informative value of integrating functional annotation of genetic variants for gene expression in advancing our understanding of the biological basis underlying complex disorders, such as bipolar disorder.
Resumo:
In vitro-produced bovine embryos become infected after exposure to bovine Herpesvirus type 5 (BoHV-5), yet no changes in developmental rates, mitochondrial activity and inhibition of apoptosis are detected in comparison to unexposed embryos. Thus, the aim of the present study was to assess the transcription of mitochondria-mediated apoptosis genes using TaqMan real-time polymerase chain reaction. Transcripts of mcl-1, caspase-2, -3, Apaf-1 and Bax genes were measured after exposure to BoHV-5 in vitro. Mitochondrial dehydrogenase activity was evaluated by MIT test and compared between groups of exposed and unexposed embryos, at day 7 of development. The rate of oocyte maturation was assessed by the extrusion of the first polar body. In summary, BoHV-5 exposed embryos retained their viability, mitochondrial dehydrogenase activity and displayed up-regulation of transcription of survival mcl-1 gene and down-regulation of Bax transcription in relation to mitochondria-mediated pathway which might improve embryo viability. These findings demonstrate that BoHV-5 exposed embryos maintain their viability and mitochondrial dehydrogenase activity with no compromise of embryos produced in vitro. (c) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The PU.1 transcription factor is essential for myeloid development. We investigated if the microtubule-associated protein 1S (MAP1S) is a novel PU.1 target with a link to autophagy, a cellular recycling pathway. Comparable to PU.1, MAP1S expression was significantly repressed in primary AML blasts as compared to mature neutrophils. Accordingly, MAP1S expression was induced during neutrophil differentiation of CD34(+) progenitor and APL cells. Moreover, PU.1 bound to the MAP1S promoter and induced MAP1S expression during APL differentiation. Inhibiting MAP1S resulted in aberrant neutrophil differentiation and autophagy. Taken together, our findings implicate the PU.1-regulated MAP1S gene in neutrophil differentiation and autophagy control.
Resumo:
Acute psychosocial stress stimulates transient increases in circulating pro-inflammatory plasma cytokines, but little is known about stress effects on anti-inflammatory cytokines or underlying mechanisms. We investigated the stress kinetics and interrelations of pro- and anti-inflammatory measures on the transcriptional and protein level. Forty-five healthy men were randomly assigned to either a stress or control group. While the stress group underwent an acute psychosocial stress task, the second group participated in a non-stress control condition. We repeatedly measured before and up to 120min after stress DNA binding activity of the pro-inflammatory transcription factor NF-κB (NF-κB-BA) in peripheral blood mononuclear cells, whole-blood mRNA levels of NF-κB, its inhibitor IκBα, and of the pro-inflammatory cytokines interleukin (IL)-1ß and IL-6, and the anti-inflammatory cytokine IL-10. We also repeatedly measured plasma levels of IL-1ß, IL-6, and IL-10. Compared to non-stress, acute stress induced significant and rapid increases in NF-κB-BA and delayed increases in plasma IL-6 and mRNA of IL-1ß, IL-6, and IκBα (p's<.045). In the stress group, significant increases over time were also observed for NF-κB mRNA and plasma IL-1ß and IL-10 (p's<.055). NF-κB-BA correlated significantly with mRNA of IL-1β (r=.52, p=.002), NF-κB (r=.48, p=.004), and IκBα (r=.42, p=.013), and marginally with IL-6 mRNA (r=.31, p=.11). Plasma cytokines did not relate to NF-κB-BA or mRNA levels of the respective cytokines. Our data suggest that stress induces increases in NF-κB-BA that relate to subsequent mRNA expression of pro-inflammatory, but not anti-inflammatory cytokines, and of regulatory-cytoplasmic-proteins. The stress-induced increases in plasma cytokines do not seem to derive from de novo synthesis in circulating blood cells.
Resumo:
Yersinia enterocolitica 4/O:3 is the most important human pathogenic bioserotype in Europe and the predominant pathogenic bioserotype in slaughter pigs. Although many studies on the virulence of Y. enterocolitica strains have showed a broad spectrum of detectable factors in pigs and humans, an analysis based on a strict comparative approach and serving to verify the virulence capability of porcine Y. enterocolitica as a source for human yersiniosis is lacking. Therefore, in the present study, strains of biotype (BT) 4 isolated from Swiss slaughter pig tonsils and feces and isolates from human clinical cases were compared in terms of their spectrum of virulence-associated genes (yadA, virF, ail, inv, rovA, ymoA, ystA, ystB and myfA). An analysis of the associated antimicrobial susceptibility pattern completed the characterization. All analyzed BT 4 strains showed a nearly similar pattern, comprising the known fundamental virulence-associated genes yadA, virF, ail, inv, rovA, ymoA, ystA and myfA. Only ystB was not detectable among all analyzed isolates. Importantly, neither the source of the isolates (porcine tonsils and feces, humans) nor the serotype (ST) had any influence on the gene pattern. From these findings, it can be concluded that the presence of the full complement of virulence genes necessary for human infection is common among porcine BT 4 strains. Swiss porcine BT 4 strains not only showed antimicrobial susceptibility to chloramphenicol, cefotaxime, ceftazidime, ciprofloxacin, colistin, florfenicol, gentamicin, kanamycin, nalidixic acid, sulfamethoxazole, streptomycin, tetracycline and trimethoprim but also showed 100% antibiotic resistance to ampicillin. The human BT 4 strains revealed comparable results. However, in addition to 100% antibiotic resistance to ampicillin, 2 strains were resistant to chloramphenicol and nalidixic acid. Additionally, 1 of these strains was resistant to sulfamethoxazole. The results demonstrated that Y. enterocolitica BT 4 isolates from porcine tonsils, as well as from feces, show the same virulence-associated gene pattern and antibiotic resistance properties as human isolates from clinical cases, consistent with the etiological role of porcine BT 4 in human yersiniosis. Thus, cross-contamination of carcasses and organs at slaughter with porcine Y. enterocolitica BT 4 strains, either from tonsils or feces, must be prevented to reduce human yersiniosis.
Resumo:
Heme-binding protein 23 kDa (HBP23), a rat isoform of human proliferation-associated gene product (PAG), is a member of the peroxiredoxin family of peroxidases, having two conserved cysteine residues. Recent biochemical studies have shown that HBP23/PAG is an oxidative stress-induced and proliferation-coupled multifunctional protein that exhibits specific bindings to c-Abl protein tyrosine kinase and heme, as well as a peroxidase activity. A 2.6-Å resolution crystal structure of rat HBP23 in oxidized form revealed an unusual dimer structure in which the active residue Cys-52 forms a disulfide bond with conserved Cys-173 from another subunit by C-terminal tail swapping. The active site is largely hydrophobic with partially exposed Cys-173, suggesting a reduction mechanism of oxidized HBP23 by thioredoxin. Thus, the unusual cysteine disulfide bond is involved in peroxidation catalysis by using thioredoxin as the source of reducing equivalents. The structure also provides a clue to possible interaction surfaces for c-Abl and heme. Several significant structural differences have been found from a 1-Cys peroxiredoxin, ORF6, which lacks the C-terminal conserved cysteine corresponding to Cys-173 of HBP23.
Resumo:
Cancer is a progressive multigenic disorder characterized by defined changes in the transformed phenotype that culminates in metastatic disease. Determining the molecular basis of progression should lead to new opportunities for improved diagnostic and therapeutic modalities. Through the use of subtraction hybridization, a gene associated with transformation progression in virus- and oncogene-transformed rat embryo cells, progression elevated gene-3 (PEG-3), has been cloned. PEG-3 shares significant nucleotide and amino acid sequence homology with the hamster growth arrest and DNA damage-inducible gene gadd34 and a homologous murine gene, MyD116, that is induced during induction of terminal differentiation by interleukin-6 in murine myeloid leukemia cells. PEG-3 expression is elevated in rodent cells displaying a progressed-transformed phenotype and in rodent cells transformed by various oncogenes, including Ha-ras, v-src, mutant type 5 adenovirus (Ad5), and human papilloma virus type 18. The PEG-3 gene is transcriptionally activated in rodent cells, as is gadd34 and MyD116, after treatment with DNA damaging agents, including methyl methanesulfonate and γ-irradiation. In contrast, only PEG-3 is transcriptionally active in rodent cells displaying a progressed phenotype. Although transfection of PEG-3 into normal and Ad5-transformed cells only marginally suppresses colony formation, stable overexpression of PEG-3 in Ad5-transformed rat embryo cells elicits the progression phenotype. These results indicate that PEG-3 is a new member of the gadd and MyD gene family with similar yet distinct properties and this gene may directly contribute to the transformation progression phenotype. Moreover, these studies support the hypothesis that constitutive expression of a DNA damage response may mediate cancer progression.
Resumo:
Cancer is a disease characterized by defects in growth control, and tumor cells often display abnormal patterns of cellular differentiation. The combination of recombinant human fibroblast interferon and the antileukemic agent mezerein corrects these abnormalities in cultured human melanoma cells resulting in irreversible growth arrest and terminal differentiation. Subtraction hybridization identifies a melanoma differentiation associated gene (mda-7) with elevated expression in growth arrested and terminally differentiated human melanoma cells. Colony formation decreases when mda-7 is transfected into human tumor cells of diverse origin and with multiple genetic defects. In contrast, the effects of mda-7 on growth and colony formation in transient transfection assays with normal cells, including human mammary epithelial, human skin fibroblast, and rat embryo fibroblast, is quantitatively less than that found with cancer cells. Tumor cells expressing elevated mda-7 display suppression in monolayer growth and anchorage independence. Infection with a recombinant type 5 adenovirus expressing antisense mda-7 eliminates mda-7 suppression of the in vitro growth and transformed phenotype. The ability of mda-7 to suppress growth in cancer cells not expressing or containing defects in both the retinoblastoma (RB) and p53 genes indicates a lack of involvement of these critical tumor suppressor elements in mediating mda-7-induced growth inhibition. The lack of protein homology of mda-7 with previously described growth suppressing genes and the differential effect of this gene on normal versus cancer cells suggests that mda-7 may represent a new class of cancer growth suppressing genes with antitumor activity.
Resumo:
The aim of this study was to determine the presence of Helicobacter pylori cytotoxin-associated gene (cagA)/vacuolating cytotoxin gene (vacA) among patients with chronic gastritis in Cuba and Venezuela. Gastric antrum biopsies were taken for culture, DNA extraction and PCR analysis. Amplification of vacA and cagA segments was performed using two regions of cagA: 349 bp were amplified with the F1/B1 primers and the remaining 335 bp were amplified with the B7629/B7628 primers. The VA1-F/VA1-R set of primers was used to amplify the 259-bp (s1) or 286-bp (s2) product and the VAG-R/VAG-F set of primers was used to amplify the 567-bp (m1) or 642-bp (m2) regions of vacA. cagA was detected in 87% of the antral samples from Cuban patients and 80.3% of those from Venezuelan patients. All possible combinations of vacA regions were found, with the exception of s2/m1. The predominant combination found in both countries was s1/m1. The percentage of cagA+ strains was increased by the use of a second set of primers and a greater number of strains was amplified with the B7629/B7628 primers in the Cuban patients (p = 0.0001). There was no significant difference between the presence of the allelic variants of vacA and cagA in both populations. The predominant genotype was cagA+/s1m1 in both countries. The results support the necessary investigation of isolates circulating among the human population in each region.
Resumo:
Helicobacter pylori (H. pylori) infection is one of the most common infections in human beings worldwide. H. pylori express lipopolysaccharides and flagellin that do not activate efficiently Toll-like receptors and express dedicated effectors, such as γ-glutamyl transpeptidase, vacuolating cytotoxin (vacA), arginase, that actively induce tolerogenic signals. In this perspective, H. pylori can be considered as a commensal bacteria belonging to the stomach microbiota. However, when present in the stomach, H. pylori reduce the overall diversity of the gastric microbiota and promote gastric inflammation by inducing Nod1-dependent pro-inflammatory program and by activating neutrophils through the production of a neutrophil activating protein. The maintenance of a chronic inflammation in the gastric mucosa and the direct action of virulence factors (vacA and cytotoxin-associated gene A) confer pro-carcinogenic activities to H. pylori. Hence, H. pylori cannot be considered as symbiotic bacteria but rather as part of the pathobiont. The development of a H. pylori vaccine will bring health benefits for individuals infected with antibiotic resistant H. pylori strains and population of underdeveloped countries.
Resumo:
If cytotoxin-associated gene A (CagA) status affects the response rates of therapy, then it may be possible to predict Helicobacter pylori eradication rates. We aimed to evaluate the response to eradication treatment of H. pylori infection in CagA-positive and CagA-negative patients. A total of 184 patients (93 males, 91 females, mean age 42.6 ± 12.8 years) with H. pylori-positive chronic gastritis were studied. Subjects underwent a gastroscopy and biopsy specimens were taken from the gastric antrum, body, and fundus. Before the eradication therapy was given all patients were tested for CagA, TNF-alpha and gastrin levels. They were then prescribed lansoprazole (30 mg bid), clarithromycin (500 mg bid), and amoxicillin (1.0 mg bid) for one week. On the 8th week a second endoscopy was performed and further biopsy specimens were obtained from the same sites as in the initial endoscopy. One hundred and twenty-seven patients (69.1%) were found to be CagA positive and 57 patients (30.9%) were CagA negative. The total eradication rate was 82.6%. In the CagA-positive group this rate was 87.4%, and in the CagA-negative group it was 71.9% (P = 0.019). TNF-alpha levels were higher in the CagA-positive than in the CagA-negative group (P = 0.001). However, gastrin levels were not different between groups (P = 0.421). Our findings revealed that CagA-negative status might be a risk factor for failure of H. pylori triple therapies. The CagA pathogenicity island gives a growth advantage to H. pylori strains and has been associated with an increase in the inflammatory response at the gastric mucosal level. These properties could make CagA-positive H. pylori strains more susceptible to antibiotics.
Resumo:
Helicobacter pylori infection is frequently acquired during childhood. This microorganism is known to cause gastritis, and duodenal ulcer in pediatric patients, however most children remain completely asymptomatic to the infection. Currently there is no consensus in favor of treatment of H. pylori infection in asymptomatic children. The firstline of treatment for this population is triple medication therapy including two antibacterial agents and one proton pump inhibitor for a 2 week duration course. Decreased eradication rate of less than 75% has been documented with the use of this first-line therapy but novel tinidazole-containing quadruple sequential therapies seem worth investigating. None of the previous studies on such therapy has been done in the United States of America. As part of an iron deficiency anemia study in asymptomatic H. pylori infected children of El Paso, Texas, we conducted a secondary data analysis of study data collected in this trial to assess the effectiveness of this tinidazole-containing sequential quadruple therapy compared to placebo on clearing the infection. Subjects were selected from a group of asymptomatic children identified through household visits to 11,365 randomly selected dwelling units. After obtaining parental consent and child assent a total of 1,821 children 3-10 years of age were screened and 235 were positive to a novel urine immunoglobulin class G antibodies test for H. pylori infection and confirmed as infected using a 13C urea breath test, using a hydrolysis urea rate >10 μg/min as cut-off value. Out of those, 119 study subjects had a complete physical exam and baseline blood work and were randomly allocated to four groups, two of which received active H. pylori eradication medication alone or in combination with iron, while the other two received iron only or placebo only. Follow up visits to their houses were done to assess compliance and occurrence of adverse events and at 45+ days post-treatment, a second urea breath test was performed to assess their infection status. The effectiveness was primarily assessed on intent to treat basis (i.e., according to their treatment allocation), and the proportion of those who cleared their infection using a cut-off value >10 μg/min of for urea hydrolysis rate, was the primary outcome. Also we conducted analysis on a per-protocol basis and according to the cytotoxin associated gene A product of the H. pylori infection status. Also we compared the rate of adverse events across the two arms. On intent-to-treat and per-protocol analyses, 44.3% and 52.9%, respectively, of the children receiving the novel quadruple sequential eradication cleared their infection compared to 12.2% and 15.4% in the arms receiving iron or placebo only, respectively. Such differences were statistically significant (p<0.001). The study medications were well accepted and safe. In conclusion, we found in this study population, of mostly asymptomatically H. pylori infected children, living in the US along the border with Mexico, that the quadruple sequential eradication therapy cleared the infection in only half of the children receiving this treatment. Research is needed to assess the antimicrobial susceptibility of the strains of H. pylori infecting this population to formulate more effective therapies. ^