999 resultados para cytokeratin 10
Resumo:
Neoplasms and tumours related to the odontogenic apparatus may be composed only of epithelial tissue or epithelial tissue associated with odontogenic ectomesenchyme. The immunohistochemical detection of different cytokeratins (CKs) polypeptides and vimentin has made it easier to explain the histogenesis of many epithelial diseases. The present study aimed to describe the immunohistochemical expression of cytokeratins 7, 8, 10, 13, 14, 18, 19 and vimentin in the epithelial components of the dental germ and of five types of odontogenic tumours. The results were compared and histogenesis discussed. All cells of the dental germ were positive for CK14, except for the preameloblasts and secreting ameloblasts, in which CK14 was gradually replaced by CK19. CK7 was especially expressed in the cells of the Hertwig root sheath and the stellate reticulum. The dental lamina was the only structure to express CK13. The reduced epithelium of the enamel organ contained CK14 and occasionally CK13. Cells similar to the stellate reticulum, present in the ameloblastoma and in the ameloblastic fibroma, were positive for CK13, which indicates a nature other than that of the stellate reticulum of the normal dental germ. The expression of CK14 and the ultrastructural aspects of the adenomatoid odontogenic tumour probably indicated its origin in the reduced dental epithelium. Calcifying odontogenic epithelial tumour is thought to be composed of primordial cells due to the expression of vimentin. Odontomas exhibited an immunohistochemical profile similar to that of the dental germ. In conclusion, the typical IF of odontogenic epithelium was CK14, while CK8, 10 and 18 were absent. Cytokeratins 13 and 19 labelled squamous differentiation or epithelial cells near the surface epithelium, and CK7 had variable expression.
Resumo:
Staphylococcus aureus is a leading cause of lower respiratory tract infections in both adult and pediatric populations. In the past two decades, reports have described emergent incidence of severe necrotizing pneumonia in previously healthy individuals, frequently caused by antibiotic resistant strains. Additionally, S. aureus remains the most common cause of ventilator-associated pneumonia, contributing morbidity and mortality in intensive care units. As treatment of infection is made more difficult by the resistance to multiple antibiotics including vancomycin, there is a pressing need for novel strategies to prevent and treat S. aureus infections. Targeting essential mechanisms that promote infection such as adhesion, colonization, invasion, evasion of immune system and signaling may lead to inhibition of pathogenic surge. Staphylococcal adhesins of the MSCRAMM family (microbial surface components recognizing adherent matrix molecules) represent viable targets for such investigations. Understanding the molecular mechanism of binding is the first step toward the development of such therapies. Analysis of bacterial strains isolated from patients with staphylococcal pneumonia show increased expression of protein A, SdrD, SdrC and ClfB, cell surface proteins members of the MSCRAMM family. In this study the interaction of these MSCRAMMs with candidate ligands has been examined. We found that SdrD mediates S. aureus adherence to the lung epithelial cell line A549. Consistently, bacteria expressing SdrD have increased persistence in the lungs of infected mice after bronchoalveolar lavage in comparison with bacteria lacking this protein. Inhibition studies revealed that bacterial attachment can be abolished using neutralizing antibodies against SdrD. Using phage display, neurexin β isoforms were identified as SdrC binding partners. Previous reports postulated that MSCRAMMS bind their ligands by a 'dock, lock and latch' mechanism of interaction. Our data suggested that ClfB, an MSCRAMM responsible for nasal colonization, binds cytokeratin 10 by a 'dock and lock' variant of this model, in which the 'latching' event is not necessary. In summary, we have characterized aspects of molecular interaction between several MSCRAMMS and host components. We hope that continued delineation of these interactions will lead to identification of novel therapeutic targets or preventive strategies against S. aureus infections. ^
Resumo:
Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome, which is caused by mutation of the autoimmune regulator (AIRE) gene, is a highly variable disease characterized by multiple endocrine failure, chronic mucocutaneous candidiasis, and various ectodermal defects. AIRE is a transcriptional regulator classically expressed in medullary thymic epithelial cells, monocytes, macrophages, and dendritic cells. Previous studies have suggested that AIRE can shuttle between the nucleus and cytoplasm of cells, although its cytoplasmic functions are poorly characterized. Through mass spectrometry analysis of proteins co-immunoprecipitating with cytoplasmic AIRE, we identified a novel association of AIRE with the intermediate filament protein cytokeratin 17 (K17) in the THP-1 monocyte cell line. We confirmed AIRE expression in HaCaT epidermal keratinocytes, as well as its interaction with K17. Confocal microscopy of human fetal and adult scalp hair follicles demonstrated a cytoplasmic pattern of AIRE staining that moderately colocalized with K17. The cytoplasmic association of AIRE with the intermediate filament network in human epidermal and follicular keratinocytes may provide a new path to understanding the ectodermal abnormalities associated with the APECED syndrome. (Am J Pathol 2011, 178:983-988; DOI: 10.1016/j.ajpath.2010.12.007)
Resumo:
There have been several recent reports of cytokeratin immunoreactivity in glial cells and tumors. We wanted to further test these tissues for cytokeratin immunoreactivity, and to determine whether antibody positivity corresponded to true cytokeratin expression. In the first set of experiments, a series of 10 formalin-fixed, frozen sections of glial tissue were employed; positive immunostaining with a cocktail of monoclonal anti-cytokeratin antibodies was seen only when a pepsin predigestion step was included in the immunostaining procedure. In the second set of experiments, 30 cases of malignant glioma fixed in both methacarn and formalin fixation were employed. Using a panel of three different anti-cytokeratin monoclonal antibodies (35 beta H11, 34 beta E12, CAM5.2), no positive immunostaining was observed in any of the methacarn-fixed tissues; positive immunostaining in the corresponding formalin-fixed tissue was frequently found, but only using the antibodies (35 beta H11, 34 beta E12) requiring enzyme predigestion. In the third set of experiments, immunoblots were performed on cytoskeletal extracts of human gliomas; no bands corresponding to known cytokeratins were observed in any cases. It is concluded that glial tissues and tumors do not, in fact, truly express cytokeratins, despite the fact that it is possible to obtain positive immunostaining of glial tumors and tissues using certain anti-cytokeratin antibodies under certain laboratory conditions.
Resumo:
Although tumor budding is linked to adverse prognosis in colorectal cancer, it remains largely unreported in daily diagnostic work due to the absence of a standardized scoring method. Our aim was to assess the inter-observer agreement of a novel 10-high-power-fields method for assessment of tumor budding at the invasive front and to confirm the prognostic value of tumor budding in our setting of colorectal cancers. Whole tissue sections of 215 colorectal cancers with full clinico-pathological and follow-up information were stained with cytokeratin AE1/AE3 antibody. Presence of buds was scored across 10-high-power fields at the invasive front by two pathologists and two additional observers were asked to score 50 cases of tumor budding randomly selected from the larger cohort. The measurements were correlated to the patient and tumor characteristics. Inter-observer agreement and correlation between observers' scores were excellent (P<0.0001; intraclass correlation coefficient=0.96). A test subgroup of 65 patients (30%) was used to define a valid cutoff score for high-grade tumor budding and the remaining 70% of the patients were entered into the analysis. High-grade budding was defined as an average of ≥10 buds across 10-high-power fields. High-grade budding was associated with a higher tumor grade (P<0.0001), higher TNM stage (P=0.0003), vascular invasion (P<0.0001), infiltrating tumor border configuration (P<0.0001) and reduced survival (P<0.0001). Multivariate analysis confirmed its independent prognostic effect (P=0.007) when adjusting for TNM stage and adjuvant therapy. Using 10-high-power fields for evaluating tumor budding has independent prognostic value and shows excellent inter-observer agreement. Like the BRE and Gleason scores in breast and prostate cancers, respectively, tumor budding could be a basis for a prognostic score in colorectal cancer.
Resumo:
INTRODUCTION: The dichotomization of non-small cell carcinoma (NSCLC) subtype into squamous (SQCC) and adenocarcinoma (ADC) has become important in recent years and is increasingly required with regard to management. The aim of this study was to determine the utility of a panel of commercially available antibodies in refining the diagnosis on small biopsies and also to determine whether cytologic material is suitable for somatic EGFR genotyping in a prospectively analyzed series of patients undergoing investigation for suspected lung cancer. METHODS: Thirty-two consecutive cases of NSCLC were first tested using a panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, 34betaE12, and a D-PAS stain for mucin, to determine their value in refining diagnosis of NSCLC. After this test phase, two further pathologists independently reviewed the cases using a refined panel that excluded 34betaE12 because of its low specificity for SQCC, and refinement of diagnosis and concordance were assessed. Ten cases of ADC, including eight derived from cytologic samples, were sent for EGFR mutation analysis. RESULTS: There was refinement of diagnosis in 65% of cases of NSCLC to either SQCC or ADC in the test phase. This included 10 of 13 cases where cell pellets had been prepared from transbronchial needle aspirates. Validation by two further pathologists with varying expertise in lung pathology confirmed increased refinement and concordance of diagnosis. All samples were adequate for analysis, and they all showed a wild-type EGFR genotype. CONCLUSION: A panel comprising cytokeratin 5/6, P63, thyroid transcription factor-1, and a D-PAS stain for mucin increases diagnostic accuracy and agreement between pathologists when faced with refining a diagnosis of NSCLC to SQCC or ADC. These small samples, even cell pellets derived from transbronchial needle aspirates, seem to be adequate for EGFR mutation analysis.
Resumo:
The infrared (IR) spectroscopic data for a series of eleven heteroleptic bis(phthalocyaninato) rare earth complexes MIII(Pc)[Pc(α-OC5H11)4] (M = Sm–Lu, Y) [H2Pc = unsubstituted phthalocyanine, H2Pc(α-OC5H11)4 = 1,8,15,22-tetrakis(3-pentyloxy)phthalocyanine] have been collected with 2 cm−1 resolution. Raman spectroscopic properties in the range of 500–1800 cm−1 for these double-decker molecules have also been comparatively studied using laser excitation sources emitting at 632.8 and 785 nm. Both the IR and Raman spectra for M(Pc)[Pc(α-OC5H11)4] are more complicated than those of homoleptic bis(phthalocyaninato) rare earth analogues due to the decreased molecular symmetry of these double-decker compounds, namely C4. For this series, the IR Pc√− marker band appears as an intense absorption at 1309–1317 cm−1, attributed to the pyrrole stretching. With laser excitation at 632.8 nm, Raman vibrations derived from isoindole ring and aza stretchings in the range of 1300–1600 cm−1 are selectively intensified. In contrast, when excited with laser radiation of 785 nm, the ring radial vibrations of isoindole moieties and dihedral plane deformations between 500 and 1000 cm−1 for M(Pc)[Pc(α-OC5H11)4] intensify to become the strongest scatterings. Both techniques reveal that the frequencies of pyrrole stretching, isoindole breathing, isoindole stretchings, aza stretchings and coupling of pyrrole and aza stretchings depend on the rare earth ionic size, shifting to higher energy along with the lanthanide contraction due to the increased ring-ring interaction across the series. The assignments of the vibrational bands for these compounds have been made and discussed in relation to other unsubstituted and substituted bis(phthalocyaninato) rare earth analogues, such as M(Pc)2 and M(OOPc)2 [H2OOPc = 2,3,9,10,16,17,23,24-octakis(octyloxy)phthalocyanine].