4 resultados para cytogenotoxicity
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fish bioassays are valuable tools that can be used to elucidate the toxicological potential of numerous substances that are present in the aquatic environment. In this study, we assessed the antagonistic action of selenium (Se) against the toxicity of mercury (Hg) in fish (Oreochromis niloticus). Six experimental groups with six fish each were defined as follows: (1) control, (2) mercury (HgCl2), (3) sodium selenite (Na2Se4O3), (4) sodium selenate (Na2Se6O4), (5) mercury + sodium selenite (HgCl2 + Na2Se4O3), and (6) mercury + sodium selenate (HgCl2 + Na2Se6O4). Hematological parameters [red blood cells (RBC), white blood cells (WBC), and erythroblasts (ERB)] in combination with cytogenotoxicity biomarkers [nuclear abnormalities (NAs) and micronuclei (MN)] were examined after three, seven, ten, and fourteen days. After 7 days of exposure, cytogenotoxic effects and increased erythroblasts caused by mercury, leukocytosis triggered by mercury + sodium selenite, leukopenia associated with sodium selenate, and anemia triggered by mercury + sodium selenate were observed. Positive correlations that were independent of time were observed between WBC and RBC, ERB and MN, and NA and MN. The results suggest that short-term exposure to chemical contaminants elicited changes in blood parameters and produced cytogenotoxic effects. Moreover, NAs are the primary manifestations of MN formation and should be included in a class characterized as NA only. Lastly, the staining techniques used can be applied to both hematological characterization and the measurement of cytogenotoxicity biomarkers.
Resumo:
The aquatic environment receives many contaminants that can induce damages at the molecular, biochemical, cellular and physiological levels. Centropomus parallelus, an important food resource for local populations, is a predator fish that feeds on small fishes and benthic invertebrates, thus being vulnerable to the bioconcentration and biomagnification processes. This study aimed to evaluate cytogenotoxic responses in erythrocytes from C. parallelus juveniles collected in the Cananeia and Sao Vicente estuaries, both in winter and in summer. After anesthesia, blood samples were collected by caudal puncture. Blood smears were prepared on glass slides and stained with May-Grunwald-Giemsa dye. Two thousand cells were analyzed per slide (1000x), and nuclear abnormalities (NA) and micronuclei (MN) were scored. The Sao Vicente sample showed MN and NA frequencies (%/1000 cells) of 0.325 and 3.575, in winter, and of 0.125 and 2.935 in summer respectively; the Cananeia sample showed frequencies of 0.0325 and 0.03, in winter, and of 0.065 and 0.355 in summer, respectively. The rates found in Sao Vicente were significantly higher than those found in Cananeia, evidencing that the levels of pollution in that estuary were high enough to induce genetic damages.