961 resultados para cytochrome P450 2C19


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen is a major drug used for adjuvant chemotherapy of breast cancer; however, its use has been associated with a small but significant increase in risk of endometrial cancer. In rats, tamoxifen is a hepatocarcinogen, and DNA adducts have been observed in both rat and human tissues. Tamoxifen has been shown previously to be metabolized to reactive products that have the potential to form protein and DNA adducts. Previous studies have suggested a role for P450 3A4 in protein adduct formation in human liver microsomes, via a catechol intermediate; however, no clear correlation was seen between P450 3A4 content of human liver microsomes and adduct formation. In the present study, we investigated the P450 forms responsible for covalent drug-protein adduct formation and the possibility that covalent adduct formation might occur via alternative pathways to catechol formation. Recombinant P450 3A4 catalyzed adduct formation, and this correlated with the level of uncoupling in the P450 incubation, consistent with a role of reactive oxygen species in potentiating adduct formation after enzymatic formation of the catechol metabolite. Whereas P450s 1AI, 2D6, and 3A5 generated catechol metabolite, no covalent adduct formation was observed with these forms. By contrast, P450 2136, 2C19, and rat liver microsomes catalyzed drug-protein adduct formation but not catechol formation. Drug protein adducts formed specifically with P450 3A4 in incubations using membranes isolated from bacteria expressing P450 3A4 and reductase, as well as in reconstitutions of purified 3A4, suggesting that the electrophilic species reacted preferentially with the P450 enzymes concerned.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 (P450)-mediated biotransformation of tamoxifen is important in determining both the clearance of the drug and its conversion to the active metabolite, trans-4-hydroxytamoxifen. Biotransformation by P450 forms expressed extrahepatically, such as in the breast and endometrium, may be particularly important in determining tissue-specific effects of tamoxifen. Moreover, tamoxifen may serve as a useful probe drug to examine the regioselectivity of different forms. Tamoxifen metabolism was investigated in vitro using recombinant human P450s. Forms CYP1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19, 2D6, 2E1, 3A4, 3A5, and 3A7 were coexpressed in Escherichia coli with recombinant human NADPH-cytochrome P450 reductase. Bacterial membranes were harvested and incubated with tamoxifen or trans-4-hydroxytamoxifen under conditions supporting P450-mediated catalysis. CYP2D6 was the major catalyst of 4-hydroxylation at low tamoxifen concentrations (170 +/- 20 pmol/40 min/0.2 nmol P450 using 18 muM tamoxifen), but CYP2B6 showed significant activity at high substrate concentrations (28.1 +/- 0.8 and 3.1 +/- 0.5 nmol/120 min/0.2 nmol P450 for CYP2D6 and CYP2B6, respectively, using 250 muM tamoxifen). These two forms also catalyzed 4'-hydroxylation (13.0 +/- 1.9 and 1.4 +/- 0.1 nmol/120 min/0.2 nmol P450, respectively, for CYP2B6 and CYP2D6 at 250 muM tamoxifen; 0.51 +/- 0.08 pmol/40 min/0.2 nmol P450 for CYP2B6 at 18 muM tamoxifen). Tamoxifen N-demethylation was mediated by CYP2D6, 1A1, 1A2, and 3A4, at low substrate concentrations, with contributions by CYP1B1, 2C9, 2C19 and 3A5 at high concentrations. CYP1B1 was the principal catalyst of 4-hydroxytamoxifen trans-cis isomerization but CYP2B6 and CYP2C19 also contributed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Echinacea preparations are one of the best selling herbal medicinal products with a well established therapeutic use in the prophylaxis of upper respiratory tract infections. Their consumption is increasing, but information about their ability to inhibit cytochrome P450 enzymes (CYP) is fragmentary. The picture is further complicated by a lack of phytochemical characterization of previously tested preparations. Due to its well characterized immunomodulatory activity, the standardized Swiss registered Echinacea purpurea (L.) Moench Echinaforce extract was selected for detailed study. With the single baculovirus-expressed CYP isoforms 1A2, 2C19, 2D9 and 3A4, inhibitory actions were measured by monitoring fluorescent metabolites derived from enzyme substrates (supersome assay). The Echinaforce extract induced mild inhibition of all these isoforms, with CYP 3A4 being the most, and CYP 2D6 the least sensitive enzyme. To assess whether CYP inhibition might be a general feature of Echinacea preparations, an additional nine commercially available preparations were screened using CYP 3A4. All tested preparations were able to inhibit CYP 3A4, but inhibitory potencies (expressed as median inhibitory concentration, IC50) varied by a factor of 150. The alkylamides are thought to be responsible for the immunomodulatory activity of Echinacea, and so the concentration of 2E,4E,8Z,10E/Z-tetranoic acid isobutylamide (1) and total alkylamide content were determined in all preparations, and the latter was found to be associated with their CYP 3A4 inhibitory potency. The chemically pure alkylamides dodeca-2E,4E,8Z,10E/Z-tetranoic acid isobutylamide (1) and dodeca-2E,4E-dieonoic acid isobutylamide (2) showed inhibitory activity on CYP 2C19, 2D6 and 3A4. However, unlike the Echinaforce extract, the alkylamides did not induce CYP 1A2 inhibition. Thus, other, as yet unidentified constituents also contribute to the overall weak inhibitory effects seen with Echinacea preparations in-vitro.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tamoxifen is a known hepatocarcinogen in rats and is associated with an increased incidence of endometrial. cancer in patients. One mechanism for these actions is via bioactivation, where reactive metabolites are generated that are capable of binding to DNA or protein. Several metabolites of tamoxifen have been identified that appear to predispose to adduct formation. These include alpha-hydroxytamoxifen, alpha,4-dihydroxytamoxifen, and alpha-hydroxy-N-desmethyltamoxifen. Previous studies have shown that cytochrome P450 (P450) enzymes play an important role in the biotransformation of tamoxifen. The aim of our work was to determine which P450 enzymes were capable of producing a-hydroxylated metabolites from tamoxifen. When tamoxifen (18 or 250,mu M) was used as the substrate, P450 3A4, and to a lesser extent, P450 2D6, P450 2B6, P450 3A5, P450 2C9, and P450 2C19 all produced a metabolite with the same HPLC retention time as alpha-hydroxytamoxifen at either substrate concentration tested. This peak was well-separated from 4-hydroxy-N-desmethyltamoxifen, which eluted substantially later under the chromatographic conditions used. No alpha,4-dihydroxytamoxifen was detected in incubations with any of the forms with tamoxifen as substrate. However, when 4-hydroxytamoxifen (100,mu M) was used as the substrate, P450 2B6, P450 3A4, P450 3A5, P450 1B1, P450 1A1, and P450 2D6 all produced detectable concentrations of a,4-dihydroxytamoxifen. These studies demonstrate that multiple human P450s, including forms found in the endometrium, may generate reactive metabolites in women undergoing tamoxifen therapy, which could subsequently play a role in the development of endometrial cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Haloperidol ( HP) has been reported to undergo cytochrome P450 (P450)-mediated metabolism to potentially neurotoxic pyridinium metabolites; however, the chemical pathways and specific enzymes involved in these reactions remain to be identified. The aims of the current study were to (i) fully identify the cytochrome P450 enzymes capable of metabolizing HP to the pyridinium metabolite, 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutylpyridinium (HPP+), and reduced HP (RHP) to 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-hydroxybutylpyridinium (RHPP+); and (ii) determine whether 4-(4-chlorophenyl)- 1-(4-fluorophenyl)-4-oxobutyl-1,2,3,6-tetrahydropyridine (HPTP) and 4-(4-chlorophenyl)1-( 4-fluorophenyl)-4-hydroxybutyl-1,2,3,6-tetrahydropyridine (RHPTP) were metabolic intermediates in these pathways. In vitro studies were conducted using human liver microsomal preparations and recombinant human cytochrome P450 enzymes (P450s 1A1, 1A2, 1B1, 2A6, 2B6, 2C9, 2C19 2D6, 2E1, 3A4, 3A5, and 3A7) expressed in bicistronic format with human NADPH cytochrome P450 reductase in Escherichia coli membranes. Pyridinium formation from HP and RHP was highly correlated across liver preparations, suggesting the same enzyme or enzymes were responsible for both reactions. Cytochrome P450s 3A4, 3A5, and 3A7 were the only recombinant enzymes which demonstrated significant catalytic activity under optimized conditions, although trace levels of activity could be catalyzed by NADPHP450 reductase alone. NADPH-P450 reductase-mediated activity was inhibited by reduced glutathione but not catalase or superoxide dismutase, suggesting O-2-dependent oxidation. No evidence was obtained to support the contention that HPTP and RHPTP are intermediates in these pathways. K-m values for HPP+ (34 +/- 5 mu M) and RHPP+ (64 +/- 4 mu M) formation by recombinant P450 3A4 agreed well with those obtained with human liver microsomes, consistent with P450 3A4 being the major catalyst of pyridinium metabolite formation in human liver.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of the enzyme P450 oxidoreductase is a rare form of congenital adrenal hyperplasia with characteristics of combined and partial impairments in steroidogenic enzyme activities, as P450 oxidoreductase transfers electrons to CYP21A2, CYP17A1, and CYP19A1. It results in disorders of sex development and skeletal malformations similar to Antley-Bixley syndrome. We report the case of a 9-year-old girl who was born with virilized genitalia (Prader stage V), absence of palpable gonads, 46,XX karyotype, and hypergonadotropic hypogonadism. During the first year of life, ovarian cyst, partial adrenal insufficiency, and osteoarticular changes, such as mild craniosynostosis, carpal and tarsal synostosis, and limited forearm pronosupination were observed. Her mother presented severe virilization during pregnancy. The molecular analysis of P450 oxidoreductase gene revealed compound heterozygosis for the nonsense p.Arg223*, and the novel missense p.Met408Lys, inherited from the father and the mother, respectively. Arq Bras Endocrinol Metab. 2012;56(8):578-85

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We isolated and sequenced the first known cytochrome P450 gene and pseudogene from an arachnid, the cattle tick, Boophilus microplus. Bath the gene and pseudogene belong to the family CYP4, but a new subfamily, CYP4W, had to be created for these genes because they are substantially different to other CYP4 genes. The gene, CPP4W1, has greatest homology with CYP4C1 from a cockroach, Blaberus discoidalis. The predicted molecular weight of the protein encoded by CYP4W1 (63 KDa) is greater than that of the other CYP4 genes. The pseudogene, CYP4W1P, is probably a processed pseudogene derived from the functional gene CYP4W1. This is only the third CYP processed pseudogene to be identified. The pseudogene is 98% identical to the functional gene, CYP4W1, therefore we hypothesise that this pseudogene evolved recently from the functional gene. The CYP4 genes from arthropods have diverged from each other more than those of mammals; consequently the phylogeny of the arthropod genes could not be resolved. (C) 1999 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pimelic acid formation for biotin biosynthesis in Bacillus subtilis has been proposed to involve a cytochrome P450 encoded by the gene biol. We have subcloned bioI and overexpressed the encoded protein, BioI. A purification protocol was developed utilizing ion exchange, gel filtration, and hydroxyapatite chromatography, Investigation of the purified BioI by UV-visible spectroscopy revealed spectral properties characteristic of a cytochrome P450 enzyme. BioI copurifies with acylated Escherichia coil acyl carrier protein (ACP), suggesting that in vivo a fatty acid substrate may be presented to BioI as an acyl-ACP. A combination of electrospray mass spectrometry of the intact acyl-ACP and GCMS indicated a range of fatty acids were bound to the ACP. A catalytically active system has been established employing E. coli flavodoxin reductase and a novel, heterologous flavodoxin as the redox partners for BioI. In this system, BioI cleaves a carbon-carbon bond of an acyl-ACP to generate a pimeloyl-ACP equivalent, from which pimelic acid is isolated after base-catalyzed saponification. A range of free fatty acids have also been explored as potential alternative substrates for BioI, with C16 binding most tightly to the enzyme. These fatty acids are also metabolized to dicarboxylic acids, but with less regiospecificity than is observed with acyl-ACPs. A possible mechanism for this transformation is discussed. These results strongly support the proposed role for BioI in biotin biosynthesis. In addition, the production of pimeloyl-ACP explains the ability of BioI to function as a pimeloyl CoA source in E. coli, which, unlike B. subtilis, is unable to utilize free pimelic acid for biotin production. (C) 2000 Academic Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Directed evolution of cytochrome P450 enzymes represents an attractive means of generating novel catalysts for specialized applications. Xenobiotic-metabolizing P450s are particularly well suited to this approach due to their inherent wide substrate specificity. In the present study, a novel method for DNA shuffling was developed using an initial restriction enzyme digestion step, followed by elimination of long parental sequences by size-selective filtration. P450 2C forms were subjected to a single round of shuffling then coexpressed with reductase in E. coli. A sample (54 clones) of the resultant library was assessed for sequence diversity, hemo- and apoprotein expression, and activity towards the substrate indole. All mutants showed a different RFLP pattern compared to all parents, suggesting that the library was free from contamination by parental forms. Haemoprotein expression was detectable in 45/54 (83%) of the mutants sampled. Indigo production was less than or comparable to the activities of one or more of the parental P450s, but three mutants showed indirubin production in excess of that seen with any parental form, representing a gain of function. In conclusion, a method is presented for the effective shuffling of P450 sequences to generate diverse libraries of mutant P450s containing a high proportion of correctly folded hemoprotein, and minimal contamination with parental forms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of the cytochrome P450 (CYP) monooxygenase system and haem oxygenase by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 Amol/kg body weight, i.p.) of cadmium chloride (CdCl2), at various time points. Total CYP content of liver microsomes decreased significantly (P < 0.05) at 12, 18, and 24 hours (22%, 47%, and 56%, respectively) after treatment. In contrast, progressive increases of hepatic coumarin 7-hydroxylase (COH) activity (indicative of CYP2A5 activity) were observed at 8 hrs (2-fold), 12 hrs (3-fold), and 7-fold at 18 and 24 hrs. Simultaneously, haem oxygenase activity increased significantly at 4 hours and continued to increase progressively to more than 50-fold compared to control. Liver CYP2A5 mRNA levels increased maximally 12 hours after treatment and decreased to almost half 6 hours later, while western blot analysis showed 2- and 3- fold increase in CYP2A5 apoprotein at 12 and 24 hours. The CYP2A5 mRNA levels in the liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 / mouse. This study demonstrates that hepatic haem oxygenase and CYP2A5 are upregulated by cadmium. The upregulation of haem oxygenase precedes that of CYP2A5. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed increase in the mRNA but not in protein levels after maximal induction may suggest involvement of post-transcriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 / mice indicates a role for this transcription factor in the regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450-dependent covalent binding of radiolabel derived fi om phenytoin (DPH) and its phenol and catechol metabolites, 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) and 5-(3',4'-dihydroxyphenyl)-5-phenylhydantoin (CAT), was examined in liver microsomes. Radiolabeled HPPH and CAT and unlabeled CAT were obtained from microsomal incubations and isolated by preparative HPLC. NADPH-dependent covalent binding was demonstrated in incubations of human liver microsomes with HPPH. When CAT was used as substrate, covalent adduct formation was independent of NADPH, was enhanced in the presence of systems generating reactive oxygen species, and was diminished under anaerobic conditions or in the presence of cytoprotective reducing agents. Fluorographic analysis showed that radiolabel derived from DPH and HPPH was selectively associated with proteins migrating with approximate relative molecular weights of 57-59 kDa and at the dye front (molecular weights < 23 kDa) on denaturing gels. Lower levels of radiolabel were distributed throughout the molecular weight range. In contrast, little selectivity was seen in covalent adducts formed from CAT. HPPH was shown to be a mechanism-based inactivator of P450, supporting the contention that a cytochrome P450 is one target of covalent binding. These results suggest that covalent binding of radiolabel derived from DPH in rat and human Liver microsomes occurs via initial P450-dependent catechol formation followed by spontaneous oxidation to quinone and semiquinone derivatives that ultimately react with microsomal protein. Targets for covalent binding may include P450s, though the catechol appears to be sufficiently stable to migrate out of the P450 active site to form adducts with other proteins. In conclusion, we have demonstrated that DPH can be bioactivated in human liver to metabolites capable of covalently binding to proteins. The relationship of adduct formation to DPH-induced hypersensitivity reactions remains to be clarified.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was undertaken to assess associations between age, gender, cigarette smoke and non-workplace cadmium exposure, and liver pathology and inter-individual variation in cytochrome P450 (CYP) expression in human tissues. Autopsy specimens of twenty-eight Queensland residents whose ages ranged from 3 to 89 years were analyzed for the presence of nine CYP protein isoforms by immunoblotting. All subjects were Caucasians and their liver cadmium contents ranged from 0.11 to 3.95 kg/g wet weight, while their kidney cadmium contents were in the range of 2 to 63 mug/g wet weight. CYP1A2, CYP2A6, CYP2D6, CYP3A4, and CYP3A5 were detected in liver but not in kidney, and CYP1A1 and CYP1B1 were not found in liver or kidney. Lowered liver CYP2C8/19 protein contents were found to be associated with liver pathology. Importantly, we show elevated levels of CYP2C9 protein to be associated with cadmium accumulation in liver. No mechanism that explains this association is apparent, but there are two possibilities that require further study. One is that variation in CYP2C9 protein levels may be, in part, attributed to an individual's non-workplace exposure to cadmium, or an individual's CYP2C9 genotype may be a risk factor for cadmium accumulation. A positive correlation was found between liver CYP3A4 protein and subject age. Levels of liver CYPIA2 protein, but not other CYP forms, were increased in people more exposed to cigarette smoke, but there was no association between CYPIA2 protein and cadmium. CYP2A6 protein was found in all liver samples and CYP2A6 gene typing indicated the absence of CYP2A6 null allele (CYP2A6(D)) in this sample group, confirming very low prevalence of homozygous CYP2A6(D) in Caucasians. CYP2A6 gene types W/W, WIC, and CIC were not associated with variations in liver microsomal CYP2A6 protein. CYP2D6 protein was absent in all twenty-five kidney samples tested but was detectable in liver samples of all but two subjects, indicating the prevalence of the CYP2D6 null allele (CYP2D6(D)) in this sample group to be about 7%, typical of Caucasian populations. (C) 2001 Elsevier Science Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 (P450) enzymes involved in drug metabolism are among the most versatile biological catalysts known. A small number of discrete forms of human P450 are capable of catalyzing the monooxygenation of a practically unlimited variety of xenobiotic substrates, with each enzyme showing a more or less wide and overlapping substrate range. This versatility makes P450s ideally suited as starting materials for engineering designer catalysts for industrial applications. In the course of heterologous expression of P450s in bacteria, we observed the unexpected formation of blue pigments. Although this was initially assumed to be an artifact, subsequent work led to the discovery of a new function of P450s in intermediary metabolism and toxicology, new screens for protein engineering, and potential applications in the dye and horticulture industries.