1000 resultados para cystatin B
Resumo:
Progressive myoclonus epilepsy (PME) has a number of causes, of which Unverricht-Lundborg disease (ULD) is the most common. ULD has previously been mapped to a locus on chromosome 21 (EPM1). Subsequently, mutations in the cystatin B gene have been found in most cases. In the present work we identified an inbred Arab family with a clinical pattern compatible with ULD, but mutations in the cystatin B gene were absent. We sought to characterize the clinical and molecular features of the disorder. The family was studied by multiple field trips to their town to clarify details of the complex consanguineous relationships and to personally examine the family. DNA was collected for subsequent molecular analyses from 21 individuals. A genome-wide screen was performed using 811 microsatellite markers. Homozygosity mapping was used to identify loci of interest. There were eight affected individuals. Clinical onset was at 7.3 +/- 1.5 years with myoclonic or tonic-clonic seizures. All had myoclonus that progressed in severity over time and seven had tonic-clonic seizures. Ataxia, in addition to myoclonus, occurred in all. Detailed cognitive assessment was not possible, but there was no significant progressive dementia. There was intrafamily variation in severity; three required wheelchairs in adult life; the others could walk unaided. MRI, muscle and skin biopsies on one individual were unremarkable. We mapped the family to a 15-megabase region at the pericentromeric region of chromosome 12 with a maximum lod score of 6.32. Although the phenotype of individual subjects was typical of ULD, the mean age of onset (7.3 years versus 11 years for ULD) was younger. The locus on chromosome 12 does not contain genes for any other form of PME, nor does it have genes known to be related to cystatin B. This represents a new form of PME and we have designated the locus as EPM1B.
Resumo:
Laryngeal squamous cell carcinoma is very common in head and neck cancer, with high mortality rates and poor prognosis. In this study, we compared expression profiles of clinical samples from 13 larynx tumors and 10 non-neoplastic larynx tissues using a custom-built cDNA microarray containing 331 probes for 284 genes previously identified by informatics analysis of EST databases as markers of head and neck tumors. Thirty-five genes showed statistically significant differences (SNR >= 11.01, p <= 0.001) in the expression between tumor and non-tumor larynx tissue samples. Functional annotation indicated that these genes are involved in cellular processes relevant to the cancer phenotype, such as apoptosis, cell cycle, DNA repair, proteolysis, protease inhibition, signal transduction and transcriptional regulation. Six of the identified transcripts map to intronic regions of protein-coding genes and may comprise non-annotated exons or as yet uncharacterized long ncRNAs with a regulatory role in the gene expression program of larynx tissue. The differential expression of 10 of these genes (ADCY6, AES, AL2SCR3, CRR9, CSTB, DUSP1, MAP3K5, PLAT, UBL1 and ZNF706) was independently confirmed by quantitative real-time RT-PCR. Among these, the CSTB gene product has cysteine protease inhibitor activity that has been associated with an antimetastatic function. Interestingly, CSTB showed a low expression in the tumor samples analyzed (p<0.0001). The set of genes identified here contribute to a better understanding of the molecular basis of larynx cancer, and provide candidate markers for improving diagnosis, prognosis and treatment of this carcinoma.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The cathepsin enzymes represent an important family of lysosomal proteinases with a broad spectrum of functions in many, if not in all, tissues and cell types. In addition to their primary role during the normal protein turnover, they possess highly specific proteolytic activities, including antigen processing in the immune response and a direct role in the development of obesity and tumours. In pigs, the involvement of cathepsin enzymes in proteolytic processes have important effects during the conversion of muscle to meat, due to their influence on meat texture and sensory characteristics, mainly in seasoned products. Their contribution is fundamental in flavour development of dry-curing hams. However, several authors have demonstrated that high cathepsin activity, in particular of cathepsin B, is correlated to defects of these products, such as an excessive meat softness together with abnormal free tyrosine content, astringent or metallic aftertastes and formation of a white film on the cut surface. Thus, investigation of their genetic variability could be useful to identify DNA markers associated with these dry cured hams parameters, but also with meat quality, production and carcass traits in Italian heavy pigs. Unfortunately, no association has been found between cathepsin markers and meat quality traits so far, in particular with cathepsin B activity, suggesting that other genes, besides these, affect meat quality parameters. Nevertheless, significant associations were observed with several carcass and production traits in pigs. A recent study has demonstrated that different single nucleotide polymorphisms (SNPs) localized in cathepsin D (CTSD), F (CTSF), H and Z genes were highly associated with growth, fat deposition and production traits in an Italian Large White pig population. The aim of this thesis was to confirm some of these results in other pig populations and identify new cathepsin markers in order to evaluate their effects on cathepsin activity and other production traits. Furthermore, starting from the data obtained in previous studies on CTSD gene, we also analyzed the known polymorphism located in the insulin-like growth factor 2 gene (IGF2 intron3-g.3072G>A). This marker is considered the causative mutation for the quantitative trait loci (QTL) affecting muscle mass and fat deposition in pigs. Since IGF2 maps very close to CTSD on porcine chromosome (SSC) 2, we wanted to clarify if the effects of the CTSD marker were due to linkage disequilibrium with the IGF2 intron3-g.3072G>A mutation or not. In the first chapter, we reported the results from these two SSC2 gene markers. First of all, we evaluated the effects of the IGF2 intron3-g.3072G>A polymorphism in the Italian Large White breed, for which no previous studies have analysed this marker. Highly significant associations were identified with all estimated breeding values for production and carcass traits (P<0.00001), while no effects were observed for meat quality traits. Instead, the IGF2 intron3-g.3072G>A mutation did not show any associations with the analyzed traits in the Italian Duroc pigs, probably due to the low level of variability at this polymorphic site for this breed. In the same Duroc pig population, significant associations were obtained for the CTSD marker for all production and carcass traits (P < 0.001), after excluding possible confounding effects of the IGF2 mutation. The effects of the CTSD g.70G>A polymorphism were also confirmed in a group of Italian Large White pigs homozygous for the IGF2 intron3-g.3072G allele G (IGF2 intron3-g.3072GG) and by haplotype analysis between the markers of the two considered genes. Taken together, all these data indicated that the IGF2 intron3-g.3072G>A mutation is not the only polymorphism affecting fatness and muscle deposition in pigs. In the second chapter, we reported the analysis of two new SNPs identified in cathepsin L (CTSL) and cathepsin S (CTSS) genes and the association results with meat quality parameters (including cathepsin B activity) and several production traits in an Italian Large White pig population. Allele frequencies of these two markers were evaluated in 7 different pig breeds. Furthermore, we mapped using a radiation hybrid panel the CTSS gene on SSC4. Association studies with several production traits, carried out in 268 Italian Large White pigs, indicated positive effects of the CTSL polymorphism on average daily gain, weight of lean cuts and backfat thickness (P<0.05). The results for these latter traits were also confirmed using a selective genotype approach in other Italian Large White pigs (P<0.01). In the 268 pig group, the CTSS polymorphism was associated with feed:gain ratio and average daily gain (P<0.05). Instead, no association was observed between the analysed markers and meat quality parameters. Finally, we wanted to verify if the positive results obtained for the cathepsin L and S markers and for other previous identified SNPs (cathepsin F, cathepsin Z and their inhibitor cystatin B) were confirmed in the Italian Duroc pig breed (third chapter). We analysed them in two groups of Duroc pigs: the first group was made of 218 performance-tested pigs not selected by any phenotypic criteria, the second group was made of 100 Italian Duroc pigs extreme and divergent for visible intermuscular fat trait. In the first group, the CTSL polymorphism was associated with weight of lean cuts (P<0.05), while suggestive associations were obtained for average daily gain and backfat thickness (P<0.10). Allele frequencies of the CTSL gene marker also differed positively among the visible intermuscular extreme tails. Instead, no positive effects were observed for the other DNA markers on the analysed traits. In conclusion, in agreement with the present data and for the biological role of these enzymes, the porcine CTSD and CTSL markers: a) may have a direct effect in the biological mechanisms involved in determining fat and lean meat content in pigs, or b) these markers could be very close to the putative functional mutation(s) present in other genes. These findings have important practical applications, in particular the CTSD and CTSL mutations could be applied in a marker assisted selection (MAS) both in the Italian Large White and Italian Duroc breeds. Marker assisted selection could also increase in efficiency by adding information from the cathepsin S genotype, but only in the Italian Large White breed.
Resumo:
The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.
Molecular determinants of improved cathepsin B inhibition by new cystatins obtained by DNA shuffling
Resumo:
Background: Cystatins are inhibitors of cysteine proteases. The majority are only weak inhibitors of human cathepsin B, which has been associated with cancer, Alzheimer's disease and arthritis. Results: Starting from the sequences of oryzacystatin-1 and canecystatin-1, a shuffling library was designed and a hybrid clone obtained, which presented higher inhibitory activity towards cathepsin B. This clone presented two unanticipated point mutations as well as an N-terminal deletion. Reversing each point mutation independently or both simultaneously abolishes the inhibitory activity towards cathepsin B. Homology modeling together with experimental studies of the reverse mutants revealed the likely molecular determinants of the improved inhibitory activity to be related to decreased protein stability. Conclusion: A combination of experimental approaches including gene shuffling, enzyme assays and reverse mutation allied to molecular modeling has shed light upon the unexpected inhibitory properties of certain cystatin mutants against Cathepsin B. We conclude that mutations disrupting the hydrophobic core of phytocystatins increase the flexibility of the N-terminus, leading to an increase in inhibitory activity. Such mutations need not affect the inhibitory site directly but may be observed distant from it and manifest their effects via an uncoupling of its three components as a result of increased protein flexibility.
Resumo:
Rats experimentally infected with Trypanosoma cruzi Y strain exhibited hypertrophy of the submandibular gland at 18 days after infection.SDS-PAGE of infected rats saliva revealed the presence of an additional band with an apparent molecular weight of about 13KDa. Electrophoresis of protein salivaand immunochemical analysis with antibody against rat cystatin S confirmed that the protein was identical to that induced by beta adrenergic stimulation.
Resumo:
BACKGROUND AND OBJECTIVES: The estimated GFR (eGFR) is important in clinical practice. To find the best formula for eGFR, this study assessed the best model of correlation between sinistrin clearance (iGFR) and the solely or combined cystatin C (CysC)- and serum creatinine (SCreat)-derived models. It also evaluated the accuracy of the combined Schwartz formula across all GFR levels. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS: Two hundred thirty-eight iGFRs performed between January 2012 and April 2013 for 238 children were analyzed. Regression techniques were used to fit the different equations used for eGFR (i.e., logarithmic, inverse, linear, and quadratic). The performance of each model was evaluated using the Cohen κ correlation coefficient and the percentage reaching 30% accuracy was calculated. RESULTS: The best model of correlation between iGFRs and CysC is linear; however, it presents a low κ coefficient (0.24) and is far below the Kidney Disease Outcomes Quality Initiative targets to be validated, with only 84% of eGFRs reaching accuracy of 30%. SCreat and iGFRs showed the best correlation in a fitted quadratic model with a κ coefficient of 0.53 and 93% accuracy. Adding CysC significantly (P<0.001) increased the κ coefficient to 0.56 and the quadratic model accuracy to 97%. Therefore, a combined SCreat and CysC quadratic formula was derived and internally validated using the cross-validation technique. This quadratic formula significantly outperformed the combined Schwartz formula, which was biased for an iGFR≥91 ml/min per 1.73 m(2). CONCLUSIONS: This study allowed deriving a new combined SCreat and CysC quadratic formula that could replace the combined Schwartz formula, which is accurate only for children with moderate chronic kidney disease.
Resumo:
Background: The combined serum creatinine (SCreat) and cystatin C (CysC) CKD-EPI formula constitutes a new advance for glomerular filtration rate (GFR) estimation in adults. Using inulin clearances (iGFRs), the revised SCreat and the combined Schwartz formulas, this study aims to evaluate the applicability of the combined CKD-EPI formula in children. Method: 201 iGFRs for 201 children were analyzed and divided by chronic kidney disease (CKD) stages (iGFRs ≥90 ml/min/1.73 m(2), 90 > iGFRs > 60, and iGFRs ≤59), and by age groups (<10, 10-15, and >15 years). Medians with 95% confidence intervals of bias, precision, and accuracies within 30% of the iGFRs, for all three formulas, were compared using the Wilcoxon signed-rank test. Results: For the entire cohort and for all CKD and age groups, medians of bias for the CKD-EPI formula were significantly higher (p < 0.001) and precision was significantly lower than the solely SCreat and the combined SCreat and CysC Schwartz formulas. We also found that using the CKD-EPI formula, bias decreased and accuracy increased while the child age group increased, with a better formula performance above 15 years of age. However, the CKD-EPI formula accuracy is 58% compared to 93 and 92% for the SCreat and combined Schwartz formulas in this adolescent group. Conclusions: The performance of the combined CKD-EPI formula improves in adolescence compared with younger ages. Nevertheless, the CKD-EPI formula performs more poorly than the SCreat and the combined Schwartz formula in pediatric population. © 2013 S. Karger AG, Basel.
Resumo:
INTRODUCTION: Cystatin C is considered a promising test to evaluate glomerular filtration rate, since it has characteristics of an ideal endogenous marker, being similar or even superior to serum creatinine according to some studies. However, it is possible that some factors (as corticotherapy) could have an influence on serum cystatin C levels regardless of the glomerular filtration rate. The aim of this study was to investigate if different doses of glucocorticoid could have an influence on serum cystatin C levels in lupus nephritis patients. METHODS: We evaluated 42 patients with lupus nephritis that performed 109 different blood collections; their mean age was 37.7 ± 13.1 years old, and 88% were female; the mean estimated glomerular filtration rate was of 61.9 ± 20.0 mL/min. Patients were divided according to their glucocorticoid dose in two groups: A - high (pulse therapy with methylprednisolone and prednisone > 0.5 mg/kg/d, n = 14) versus B - low doses (prednisone ≤ 0.5 mg/kg/d, n = 28). Serum creatinine levels were used as parameters for renal function comparison. Cystatin C was determined by an in-house methodology, using Luminex system flow citometry. RESULTS: Considering these groups, cystatin C levels were different only in the second visit (p = 0.106). But, when the serum creatinine levels were considered in the same groups, a marginally significant difference among them (p = 0.070) was observed, which suggested that the difference in cystatin C levels between the groups was caused by their respective glomerular filtration rate. There was not any difference between those groups that received or did not receive pulse therapy. CONCLUSION: Although some previous studies have shown that glucocorticoid has an influence on serum cystatin C levels, we have not observed such interference in the lupus nephritis patients submitted to corticotherapy.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
AIMS Cystatin C is a well established marker of kidney function. There is evidence that cystatin C concentrations are also associated with mortality. The present analysis prospectively evaluated the associations of cystatin C with all-cause and cardiovascular (CV) mortality in a well-characterized cohort of persons undergoing angiography, but without overt renal insufficiency. METHODS Cystatin C was available in 2998 persons (mean age: 62.7 ± 10.5 years; 30.3% women). Of those 2346 suffered from coronary artery disease (CAD) and 652 (controls) did not. Creatinine (mean ± SD: 83.1 ± 47.8 vs. 74.1 ± 24.7 μmol/L, p = 0.036) but not Cystatin C (mean ± SD: 1.02 ± 0.44 vs. 0.92 ± 0.26 mg/L, p = 0.065) was significantly higher in patients with CAD. After a median follow-up of 9.9 years, in total 898 (30%) deaths occurred, 554 (18.5%) due to CV disease and 326 (10.9%) due to non-CV causes. Multivariable-adjusted Cox analysis (adjusting for eGFR and established cardiovascular risk factors, lipid lowering therapy, angiographic coronary artery disease, and C-reactive protein) revealed that patients in the highest cystatin C quartile were at an increased risk for all-cause (hazard ratio (HR) 1.93, 95% CI 1.50-2.48) and CV mortality (HR 2.05 95% CI 1.48-2.84) compared to those in the lowest quartile. The addition of cystatin C to a model consisting of established cardiovascular risk factors increased the area under the receiver-operating characteristic curve for CV and all-cause mortality, but the difference was statistically not significant. However, reclassification analysis revealed significant improvement by addition of cystatin C for CV and all-cause mortality (p < 0.001), respectively. CONCLUSION The concentration of cystatin C is strongly associated with long-term all-cause and cardiovascular mortality in patients referred to coronary angiography, irrespective of creatinine-based renal function.
Resumo:
Renal insufficiency is one of the most common co-morbidities present in heart failure (HF) patients. It has significant impact on mortality and adverse outcomes. Cystatin C has been shown as a promising marker of renal function. A systematic review of all the published studies evaluating the prognostic role of cystatin C in both acute and chronic HF was undertaken. A comprehensive literature search was conducted involving various terms of 'cystatin C' and 'heart failure' in Pubmed medline and Embase libraries using Scopus database. A total of twelve observational studies were selected in this review for detailed assessment. Six studies were performed in acute HF patients and six were performed in chronic HF patients. Cystatin C was used as a continuous variable, as quartiles/tertiles or as a categorical variable in these studies. Different mortality endpoints were reported in these studies. All twelve studies demonstrated a significant association of cystatin C with mortality. This association was found to be independent of other baseline risk factors that are known to impact HF outcomes. In both acute and chronic HF, cystatin C was not only a strong predictor of outcomes but also a better prognostic marker than creatinine and estimated glomerular filtration rate (eGFR). A combination of cystatin C with other biomarkers such as N terminal pro B- type natriuretic peptide (NT-proBNP) or creatinine also improved the risk stratification. The plausible mechanisms are renal dysfunction, inflammation or a direct effect of cystatin C on ventricular remodeling. Either alone or in combination, cystatin C is a better, accurate and a reliable biomarker for HF prognosis. ^
Resumo:
Senescence-associated proteolysis in plants is a crucial process to relocalize nutrients from leaves to growing or storage tissues. The massive net degradation of proteins involves broad metabolic networks, different subcellular compartments, and several types of proteases and regulators. C1A cysteine proteases, grouped as cathepsin L-, B-, H-, and F-like according to their gene structures and phylogenetic relationships, are the most abundant enzymes responsible for the proteolytic activity during leaf senescence. Besides, cystatins as specific modulators of C1A peptidase activities exert a complex regulatory role in this physiological process. This overview article covers the most recent information on C1A proteases in leaf senescence in different plant species. Particularly, it is focussed on barley, as the unique species where the whole gene family members of C1A cysteine proteases and cystatins have been analysed.