981 resultados para cyclohexane-1,2-dicarboxylic anhydride
Resumo:
The structures of the cyclic imides cis-2-(2-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C14H14FNO2, (I), and cis-2-(4-fluorophenyl)-3a,4,5,6,7,7a-hexahydroisoindoline-1,3-dione, C14H14FNO2, (III), and the open-chain amide acid rac-cis-2-[(3-fluorophenyl)carbamoyl]cyclohexane-1-carboxylic acid, C14H16FNO3, (II), are reported. Cyclic imides (I) and (III) are conformationally similar, with comparable ring rotations about the imide N-Car bond [the dihedral angles between the benzene ring and the five-membered isoindole ring are 55.40 (8)° for (I) and 51.83 (7)° for (III)]. There are no formal intermolecular hydrogen bonds involved in the crystal packing of either (I) or (III). With the acid (II), in which the meta-related F-atom substituent is rotationally disordered (0.784:0.216), the amide group lies slightly out of the benzene plane [the interplanar dihedral angle is 39.7 (1)°]. Intermolecular amide-carboxyl N-HO hydrogen-bonding interactions between centrosymmetrically related molecules form stacks extending down b, and these are linked across c by carboxyl-amide O-HO hydrogen bonds, giving two-dimensional layered structures which lie in the (011) plane. The structures reported here represent examples of compounds analogous to the phthalimides or phthalanilic acids and have little precedence in the crystallographic literature.
Resumo:
The structures of the compounds from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with 4-chloroaniline [rac-N-(4-chlorophenyl)-2-carboxycycloclohexane-1-carboxamide] (1), 4-bromoaniline [2-(4-bromophenyl)-perhydroisoindolyl-1,3-dione] (2) and 3-hydroxy-4-carboxyaniline (5-aminosalicylic acid) [2-(3-hydroxy-4-carboxyphenyl)-perhydroisoindolyl-1,3-dione] (3) have been determined at 200 K. Crystals of the open-chain amide carboxylic acid 1 are orthorhombic, space group Pbcn, with unit cell dimensions a = 20.1753(10), b = 8.6267(4), c = 15.9940(9) Å, and Z = 8. Compounds 2 and 3 are cyclic imides, with 1 monoclinic having space group P21 and cell dimensions a = 11.5321(3), b = 6.7095(2), c = 17.2040(5) Å, β = 102.527(3)o. Compound 3 is orthorhombic with cell dimensions a = 6.4642(3), b = 12.8196(5), c = 16.4197(7) Å. Molecules of 1 form hydrogen-bonded cyclic dimers which are extended into a two-dimensional layered structure through amide-group associations: 3 forms into one-dimensional zigzag chains through carboxylic acid…imide O-atom hydrogen bonds, while compound 2 is essentially unassociated. With both cyclic imides 2 and 3, disorder is found which involves the presence of partial enantiomeric replacement of the cis-cyclohexane-1,2-substituted ring systems.
Resumo:
The structures of the open chain amide carboxylic acid rac-cis-[2-(2-methoxyphenyl)carbamoyl]cyclohexane-1-carboxylic acid, C15H19NO4, (I) and the cyclic imides rac-cis-2-(4-methoxyphenyl)-3a,4,5,6,7,7-hexahydroisoindole-1,3-dione,C15H17NO3, (II), chiral cis-2-(3-carboxyphenyl)-3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione, C15H15NO4,(III) and rac-cis-2-(4-carboxyphenyl)- 3a,4,5,6,7,7a-hexahydroisoindole-1,3-dione monohydrate, C15H15NO4. H2O) (IV), are reported. In the amide acid (I), the phenylcarbamoyl group is essentially planar [maximum deviation from the least-squares plane = 0.060(1)Ang. for the amide O atom], the molecules form discrete centrosymmetric dimers through intermolecular cyclic carboxy-carboxy O-H...O hydrogen-bonding interactions [graph set notation R2/2(8)]. The cyclic imides (II)--(IV) are conformationally similar, with comparable phenyl ring rotations about the imide N-C(aromatic) bond [dihedral angles between the benzene and isoindole rings = 51.55(7)deg. in (II), 59.22(12)deg. in (III) and 51.99(14)deg. in (IV). Unlike (II) in which only weak intermolecular C-H...O(imide) hydrogen bonding is present, the crystal packing of imides (III) and (IV) shows strong intermolecular carboxylic acid O-H...O hydrogen-bonding associations. With (III), these involve imide O-atom acceptors, giving one-dimensional zigzag chains [graph set C(9)], while with the monohydrate (IV), the hydrogen bond involves the partially disordered water molecule which also bridges molecules through both imide and carboxyl O-atom acceptors in a cyclic R4/4(12) association, giving a two-dimensional sheet structure. The structures reported here expand the structural data base for compounds of this series formed from the facile reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with substituted anilines, in which there is a much larger incidence of cyclic imides compared to amide carboxylic acids.
Resumo:
The structures of bis(guanidinium)rac-trans-cyclohexane-1,2-dicarboxylate, 2(CH6N3+) C8H10O4- (I), guanidinium 3-carboxybenzoate monohydrate CH6N3+ C8H5O4- . H2O (II) and bis(guanidinium) benzene-1,4-dicarboxylate trihydrate, 2(CH6N3+) C8H4O4^2- . 3H2O (III) have been determined and the hydrogen bonding in each examined. All three compounds form three-dimensional hydrogen-bonded framework structures. In anhydrous (I), both guanidinium cations give classic cyclic R2/2(8) N--H...O,O'(carboxyl) and asymmetric cyclic R1/2(6) hydrogen-bonding interactions while one cation gives an unusual enlarged cyclic interaction with O acceptors of separate ortho-related carboxyl groups [graph set R2/2(11)]. Cations and anions also associate across inversion centres giving cyclic R2/4(8) motifs. In the 1:1 guanidinium salt (II), the cation gives two separate cyclic R1/2(6) interactions, one with a carboxyl O-acceptor, the other with the water molecule of solvation. The structure is unusual in that both carboxyl groups give short inter-anion O...H...O contacts, one across a crystallographic inversion centre [2.483(2)\%A], the other about a two-fold axis of rotation [2.462(2)\%A] with a half-occupancy hydrogen delocalized on the symmetry element in each. The water molecule links the cation--anion ribbon structures into a three-dimensional framework. In (III), the repeating molecular unit comprises a benzene-1,4-dicarboxylate dianion which lies across a crystallographic inversion centre, two guanidinium cations and two water molecules of solvation (each set related by two-fold rotational symmetry), and a single water molecule which lies on a two-fold axis. Each guanidinium cation gives three types of cyclic interactions with the dianions: one R^1^~2~(6), the others R2/3(8) and R3/3(10) (both of these involving the water molecules), giving a three-dimensional structure through bridges down the b cell direction. The water molecule at the general site also forms an unusual cyclic R2/2(4) homodimeric association across an inversion centre [O--H...O, 2.875(2)\%A]. The work described here provides further examples of the common cyclic guanidinium cation...carboxylate anion hydrogen-bonding associations as well as featuring other less common cyclic motifs.
Resumo:
The structure of the 1:1 brucinium salt of cis-cyclohexane-1,2-dicarboxylic acid, 2,3-dimethoxy-10-oxostrychnidinium (1R,2S)-2-carboxycyclohexane-1-carboxylate dihydrate, has revealed the resolved (1R,2S) enantiomer of the acid. Crystals of the compound are orthorhombic, space group P212121, with unit cell dimensions a = 8.1955(3), b = 12.4034(3), c = 29.9073(9)Å, and Z = 4. The asymmetric unit comprises the brucinium cation, the hydrogen cis-cyclohexane-1,2-dicarboxylate cation, in which the carboxylate group is disordered over two sites (58, 42%), and two water molecules of solvation, one of which is occupies two 50% occupancy sites. The classic undulating brucinium cation substructures are present with the anion and the water molecules occupying the interstitial cavities and are hydrogen-bonded to them in a two-dimensional network structure.
Resumo:
In the structure of the title molecular adduct C8H12O4 . C9H7N, the two species are interlinked through a carboxylic acid-isoquinoline O-H...N hydrogen bond, these molecular pairs then inter-associate through the second acid group of the cis-cyclohexane-1,2-dicarboxylic acids, forming a classic centrosymmetric cyclic head-to-head carboxylic acid--carboxyl O---H...O hydrogen-bonding association [graph set R^2^~2~(8)], giving a zero-dimensional structure.
Resumo:
In the title salt, racemic C6H12N2O+ C8H11O4- from the reaction of cis-cyclohexane-1,2-dicarboxylic anhydride with isonipecotamide, the cations are linked into duplex chain substructures through both centrosymmetric cyclic head-to-head 'amide motif' hydrogen-bonding associations [graph set R2/2(8)] and 'side-by-side' R2/2(14) associations. The anions are incorporated into the chains through cyclic R3/4(10) interactions involving amide and piperidinium N-H...O(carboxyl) hydrogen bonds which, together with inter-anion carboxylic acid O-H...O(carboxyl) hydrogen bonds, give a two-dimensional layered structure extending along (011).
Resumo:
The unusual (1:1) complex ‘adduct’ salt of copper(II) with 4,5-dichlorophthalic acid (H2DCPA), having formula [Cu(H2O)4(C8H3Cl2O4) (C8H4Cl2O4)] . (C8H3Cl2O4) has been synthesized and characterized using single-crystal X-ray diffraction. Crystals are monoclinic, space group P21/c, with Z = 4 in a cell with dimensions a = 20.1376(7), b =12.8408(4) c = 12.1910(4) Å, β = 105.509(4)o. The complex is based on discrete tetragonally distorted octahedral [CuO6] coordination centres with the four water ligands occupying the square planar sites [Cu-O, 1.962(4)-1.987(4) Å] and the monodentate carboxyl-O donors of two DCPA ligand species in the axial sites. The first of these bonds [Cu-O, 2.341(4) Å] is with an oxygen of a HDCPA monoanion, the second with an oxygen of a H2DCPA acid species [Cu-O, 2.418(4) Å]. The un-coordinated ‘adduct’ molecule is a HDCPA counter anion which is strongly hydrogen-bonded to the coordinated H2DCPA ligand [O… O, 2.503(6) Å] while a number of peripheral intra- and intermolecular hydrogen-bonding interactions give a two-dimensional network structure.
Resumo:
In the structure of the title salt adduct, C6H13N2O+ C8H5O4- . C8H6O4, the asymmetric unit comprises one isonipecotamide cation, a hydrogen phthalate anion and a phthalic acid adduct molecule and form a two-dimensional hydrogen-bonded network through head-to-tail cation-anion-adduct molecule interactions which include a cyclic heteromolecular amide--carboxylate motif [graph set R2/2(8)], conjoint cyclic R2/2(6) and R3/3(10) piperidinium N-H...O(carboxyl) associations, as well as strong carboxylic acid O-H...O(carboxyl) hydrogen bonds.
Resumo:
Bifunctional chiral primary amine 8 containing an (S,S)-trans-cyclohexane-1,2-diamine scaffold and a 2-benzimidazole unit is used as a general organocatalyst for the Michael addition of α,α-branched aldehydes to nitroalkenes and maleimides. The reactions take place, with 20 mol % of catalyst in dichloromethane at rt for nitroalkenes and with 15 mol % catalyst loading in toluene at 10 °C for maleimides, in good yields and enantioselectivities. DFT calculations demonstrate the bifunctional character of this organocatalyst activating the aldehyde by enamine formation and the Michael acceptor by double hydrogen bonding.
Resumo:
New alicyclic Polyimides (PIs) were prepared from asymmetric alicyclic dianhydride, 5-(2,5-dioxotetrahydrofuryl)-3-methyl-cyclohexane-1,2-dicarboxylic anhydride (DOCDA) and the corresponding aromatic diamines such as p-phenylenediamine, m-phenylenediamine and oxydianiline etc. by the polycondensation in N-methyl-2-pyrrolidone (NMP) followed by chemical imidization as well as one step polyimidization in m-cresol in the presence of isoquinoline as a catalyst. The resulting PIs with glass transition temperatures ranging from 220 to 328 degrees C had the inherent viscosities within the range of 0.25 similar to 1.42 dL/g. These polymers were readily soluble in aprotic polar solvents such as NMP, dimethylacetamide (DMAc), dimethylesulfoxide (DMSO), etc. Furthermore, some of the polymers showed good solubility properties to common organic solvents like tetrahydrofurane and chlorform. Also, all of these polyimide films were tough, almost colourless, and transparent.
Resumo:
The synthesis of the first member of a new class of Dewar benzenes has been achieved. The synthesis of 2,3- dimethylbicyclo[2.2.0]hexa-2,5-diene-1, 4-dicarboxylic acid and its anhydride are described. Dibromomaleic anhydride and dichloroethylene were found to add efficiently in a photochemical [2+2] cycloaddition to produce 1,2-dibromo- 3,4-dichlorocyclobutane-1,2-dicarboxylic acid. Removal of the bromines with tin/copper couple yielded dichloro- cyclobutenes which added to 2-butyne under photochemical conditions to yield 5,6-dichloro-2,3-dimethylbicyclo [2.2.0] hex-2-ene dicarboxylic acids. One of the three possible isomers yielded a stable anhydride which could be dechlorinated using triphenyltin radicals generated by the photolysis of hexaphenylditin.
Photolysis of argon matrix isolated 2,3-dimethylbicyclo [2.2.0]hexa-2, 5-diene-1,4-dicarboxylic acid anhydride produced traces whose strongest bands in the infrared were at 3350 and 600 cm^(-1). This suggested the formation of terminal acetylenes. The spectra of argon matrix isolated E- and Z- 3,4-dimethylhexa-1,5-diyne-3-ene and cis-and trans-octa- 2,6-diyne-4-ene were compared with the spectrum of the photolysis products. Possibly all four diethynylethylenes were present in the anhydride photolysis products. Gas chromatograph-mass spectral analysis of the volatiles from the anhydride photolysis again suggested, but did not confirm, the presence of the diethynylethylenes.
Resumo:
In the structure of the title compound, cis NH4+ C8H11O4-, the carboxylic acid and carboxyl groups of the cation adopt C-C-C-O torsion angles of 174.9(2) and -145.4(2)deg. respecticely with the alicyclic ring. The ammonium H atoms of the cations give a total of five hydrogen-bonding associations with carboxyl O-atom acceptors of the anion which, together with a carboxylic acid O-H...O(carboxyl) interaction give two-dimensional sheet structures which lie in the (101) planes in the unit cell.