960 resultados para cutaneous hypersensitivity
Resumo:
The cutaneous hypersensitivity test was used to correlate host resistance to ticks and type of reactions elicited by Amblyomma cajennense (Fabricius, 1787) tick extract in rabbits. Rabbits were divided into 3 groups of 2 animals each: naive, pre-infested and control. Cutaneous hypersensitivity was induced by intradermal inoculation of 25 mug extract in 0.03 rut of phosphate buffered saline (PBS) in rabbit ears. Control rabbits were inoculated with PBS only. The ear thickness was measured with a Mitutoyo(R) device before and 10 min, 1, 2,4,18, 24,48,72 and 96 h post-inoculation (PI). Pre-infested rabbits showed an immediate type reaction within the 1st 10 min PI (60 % increase in ear thickness) and a delayed reaction (18 h) (85 % increase), whereas the naive rabbits showed only the immediate reaction within the 1st 4 h (60 % increase). PBS induced only mild reactions. These results point out the crucial role of the cellular immune response of rabbits in the expression of resistance to A. cajennense.
Resumo:
The cutaneous hypersensitivity induced by Rhipicephalus sanguineus tick extract in dogs (natural host) and guinea-pigs (laboratory host) was evaluated. The left ear of infested and control (tick-bite naive) dogs and guinea-pigs was injected intradermally with an extract from unfed adult ticks and the right ear with phosphate buffered saline (PBS). Ear thickness variations were then measured after 10 min and 1, 2, 6, 18, 24, 48, 72 and 96 h post-injection. Results were expressed as percentual changes in the ear thickness in relation to pre-inoculation values. The final variation in ear thickness induced by the extract was given by subtracting, in each animal, the right ear percentual increase from that of the left ear. Guinea-pigs were tested at two different times following infestation and with two different doses of extract. Infested guinea-pigs from the three experiments developed an immediate (within the first 2 h post-inoculation) and a strong delayed reaction (24 h) to the extract. Dogs, unlike guinea-pigs, developed only a strong immediate reaction whereby an 80% increase in ear thickness was observed. Control animals, with the exception of one dog, did not develop any significant reaction to the extract. Only mild reactions were induced by PBS in the right ear of all animals. The correlation between the absence of a strong delayed type reaction to tick extract and the lack of resistance of the natural host to R. sanguineus tick is discussed. © 1995 Chapman & Hall.
Resumo:
In general, hosts develop resistance to ticks after repeated infestations; nevertheless, several studies on naturally occurring host-tick interactions were unable to detect resistance of hosts to ticks even after repeated infestations. The purpose of this investigation was to study the type of cutaneous hypersensitivity to unfed nymphal extract of A. cajennense in dogs, which, unlike guinea pigs, do not develop resistance. A first, but no second, peak in skin reaction was observed, suggesting that cellular immunity is an important mechanism of resistance to ticks. This may partially explain why guinea pigs, but not dogs, develop resistance against ticks.
Resumo:
A cutaneous hypersensitivity test (CHT) was used to correlate host resistance to ticks and type of reaction elicited to unfed larval extract-ULE of the cattle tick Boophilus microplus in European and Indian cattle. Twenty calves were separated into four groups of five animals each: naïve or preinfested Indian or European cattle. CHT was induced by intradermal inoculation of 0.1 ml of ULE cattle tick B. microplus (50 μg protein) in the calf ear. Ear thickness was measured using calipers before and 10 min, 1, 2, 6, 18, 24, 48, 72, 96, and 144 h postinoculation (PI). Preinfested European calves showed only an immediate type reaction with maximum response (75% increase in ear thickness) at 10 min PI. On the other hand, preinfested Indian calves presented an immediate response with maximum reaction (70% increase in ear thickness) between 10 min and one hour PI, and a delayed type reaction at 72 h PI (60% increase in ear thickness). These results point out the crucial role of the cellular immune response of cattle in the expression of resistance to cattle tick B. microplus. Skin test might be useful in the ranking of cattle according to the susceptibility/resistance to ticks.
Resumo:
In the present study we compared the immunological reactions between Rhipicephalus sanguineus tick-infested susceptible (dogs and mice) and tick-resistant hosts (guinea pigs), elucidating some of the components of efficient protective responses against ticks. We found that T-cells from guinea pigs infested with adult ticks proliferate vigorously in the presence of concanavalin A (ConA), whereas ConA-induced cell proliferation of tick-infested mice and dogs was significantly decreased at 43.1 and 94.0%, respectively, compared to non-infested controls. Moreover, cells from mice and dogs submitted to one or three successive infestations did not exhibit a T-cell proliferative response to tick antigens, whilst cells from thrice tick-infested guinea pigs, when cultured with either a tick extract or tick saliva, displayed a significant increase in cell proliferation. Also, we evaluated the response of tick-infested mice to a cutaneous hypersensitivity test induced by a tick extract. Tick-infested mice developed a significant immediate reaction, whereby a 29.9% increase in the footpad thickness was observed. No delayed-type hypersensitivity (DTH) reaction was detected. Finally, the differential cell count at the tick attachment site in repeatedly infested mice exhibited a 6.6- and 4.1-fold increase in the percentage of eosinophils and neutrophils, respectively, compared to non-infested animals, while a decrease of 77.0-40.9 in the percentage of mononuclear cells was observed. The results of the cutaneous hypersensitivity test and the cellular counts at the tick feeding site for mice support the view that tick-infested mice develop an immune response to R. sanguineus ticks very similar to dogs, the natural host of this species of tick, but very different from guinea pigs (resistant host), which develop a DTH reaction in addition to a basophil and mononuclear cell infiltration at the tick-attachment site. In conclusion, saliva introduced during tick infestations reduces the ability of a susceptible animal host to respond to tick antigens that could stimulate a protective immune response. As a consequence, the animals present a lack of DTH response and disturbed cellular migration to tick feeding site, which can represent a deficient response against ticks. © 2003 Elsevier B.V. All rights reserved.
Resumo:
Theoretical models of host-parasite coevolution assume a partially genetic basis to the variability in susceptibility to parasites among hosts, for instance as a result of genetic variation in immune function. However, few empirical data exist for free-living vertebrate hosts to support this presumption. In a cross-fostering experiment with nestling great tits, by comparing nestlings of the same origin we investigated (i) the variance in host resistance against an ectoparasite due to a common genetic origin, (ii) the effect of ectoparasite infestation on cell-mediated immunity and (iii) the variance in cell-mediated immunity due to a common genetic origin. Ectoparasitic hen fleas can impair the growth of nestling great tits and nestling growth was therefore taken as a measure of host susceptibility. A common origin did not account for a significant part of the variation in host susceptibility to fleas. There was no significant overall effect of fleas on nestling growth or cell-mediated immunity, as assessed by a cutaneous hypersensitivity response. A common rearing environment explained a significant part of the variation in cell-mediated immunity among nestlings, mainly through its effect on nestling body mass. The variation in cell-mediated immunity was also related to a common origin. However, the origin-related variation in body mass did not account for the origin-related differences in cell-mediated immunity. The results of the present study thus suggest heritable variation in cell-mediated immunity among nestling great tits. [References: 49]
Resumo:
The Stevens-Johnson syndrome is a severe potentially life-threatening form of the erythema multiforme, affecting both skin and mucous membranes. We present a case of a 49-year-old male patient with AIDS who developed a Stevens-Johnson syndrome while being treated with pyrimethamine, sulfadiazine and phenytoin for cerebral toxoplasmosis. Further diagnostic evaluation of this dangerous cutaneous affection may prove difficult for several reasons. In particular, in patients with AIDS who are more susceptible for adverse drug reactions and who are simultaneously receiving a variety of drugs with a considerable potential of cutaneous side effects, therapy cannot be withhold for lack of therapeutic alternatives. Moreover, the low lymphocyte count in this case may have made reliable testing with lymphocyte transformation studies impossible. The evaluation and the differential diagnosis of the drug-induced Stevens-Johnson syndrome are discussed. Especially long- and moderately long-acting sulfonamides belong to the most important agents that can cause a drug-induced Stevens-Johnson syndrome. The pathogenesis and the risk factors for cutaneous hypersensitivity reactions in HIV-infected patients are only poorly understood. These kind of reactions, however, seem to occur more often in patients with a more advanced immunodeficiency.
Resumo:
Purpose: To construct a cluster model or a gene signature for Stevens-Johnson syndrome (SJS) using pathways analysis in order to identify some potential biomarkers that may be used for early detection of SJS and epidermal necrolysis (TEN) manifestations. Methods: Gene expression profiles of GSE12829 were downloaded from Gene Expression Omnibus database. A total of 193 differentially expressed genes (DEGs) were obtained. We applied these genes to geneMANIA database, to remove ambiguous and duplicated genes, and after that, characterized the gene expression profiles using geneMANIA, DAVID, REACTOME, STRING and GENECODIS which are online software and databases. Results: Out of 193 genes, only 91 were used (after removing the ambiguous and duplicated genes) for topological analysis. It was found by geneMANIA database search that majority of these genes were coexpressed yielding 84.63 % co-expression. It was found that ten genes were in Physical interactions comprising almost 14.33 %. There were < 1 % pathway and genetic interactions with values of 0.97 and 0.06 %, respectively. Final analyses revealed that there are two clusters of gene interactions and 13 genes were shown to be in evident relationship of interaction with regards to hypersensitivity. Conclusion: Analysis of differential gene expressions by topological and database approaches in the current study reveals 2 gene network clusters. These genes are CD3G, CD3E, CD3D, TK1, TOP2A, CDK1, CDKN3, CCNB1, and CCNF. There are 9 key protein interactions in hypersensitivity reactions and may serve as biomarkers for SJS and TEN. Pathways related gene clusters has been identified and a genetic model to predict SJS and TEN early incidence using these biomarker genes has been developed.
Resumo:
ABSTRACT: Leishmania (Leishmania) amazonensis has for some time been considered as the causative agent of two distinct forms of American cutaneous leishmaniasis (ACL): localized cutaneous leishmaniasis (LCL), and anergic diffuse cutaneous leishmaniasis (ADCL). Recently, a new intermediate form of disease, borderline disseminated cutaneous leishmaniasis (BDCL), was introduced into the clinical spectrum of ACL caused by this parasite, and in this paper we record the clinical, histopathological, and immunological features of eight more BDCL patients from Brazilian Amazonia, who acquired the disease in the Pará state, North Brazil. Seven of them had infections of one to two years' evolution and presented with primary skin lesions and the occurrence of metastases at periods varying from six to 12 months following appearance of the first lesion. Primary skin lesions ranged from 1-3 in number, and all had the aspect of an erythematous, infiltrated plaque, variously located on the head, arms or legs. There was lymphatic dissemination of infection, with lymph node enlargement in seven of the cases, and the delayed hypersensitivity skin-test (DTH) was negative in all eight patients prior to their treatment. After that, there was a conversion of DTH to positive in five cases re-examined. The major histopathological feature was a dermal mononuclear infiltration, with a predominance of heavily parasitized and vacuolated macrophages, together with lymphocytes and plasma cells. In one case, with similar histopathology, the patient had acquired his infection seven years previously and he presented with the largest number of disseminated cutaneous lesions. BDCL shows clinical and histopathological features which are different from those of both LCL and ADCL, and there is a good prognosis of cure which is generally not so in the case of frank ADCL.
Resumo:
This was a cross-sectional study which analyzed the prevalence and the clinical and immunological spectrum of canine Leishmania (L.) infantum chagasi infection in a cohort of 320 mongrel dogs living in an endemic area of American visceral leishmaniasis in the Amazonian Brazil by using, mainly, the indirect fluorescence antibody test (IFAT-IgG) and the delayed-type hypersensitivity (DTH), and the parasite research by the popliteal lymph node aspiration. The IFAT and DTH reactivity recognized three different immune response profiles: (1) IFAT((+))/DTH(-) (107 dogs), (2) IFAT((-))/DTH(+) (18 dogs), and (3) IFAT((+))/DTH(+) (13 dogs), providing an overall prevalence of infection of 43 % (138/320). Thus, the specific prevalence of IFAT ((+)) /DTH ((-)) 33.4 % (107/320) was higher than those of IFAT ((-)) /DTH ((+)) 5.6 % (18/320) and IFAT ((+)) /DTH ((+)) 4.0 % (13/320). Moreover, the frequency of these profiles among 138 infected dogs showed that the IFAT ((+)) /DTH ((-)) rate of 77.5 % (107/138) was also higher than those of 13.0 % (18/138) of IFAT ((-)) /DTH ((+)) and 9.5 % (13/138) of IFAT ((+)) /DTH ((+)) rates. The frequency of asymptomatic dogs (76 %-105) was higher than those of symptomatic (16.6 %-23) and oligosymptomatic ones (7.4 %-10). A total of 16 (11.6 %) L. (L.) i. chagasi isolates were obtained from infected dogs, all from the IFAT ((+)) /DTH ((-)) profile: 41 % (9/22) from symptomatic, 33.3 % (3/9) from oligosymptomatic, and 5.2 % (4/76) from asymptomatic dogs. These findings strongly suggested that despite the higher frequency of asymptomatic dogs (76 %-105), the majority (72.4 %-76) was characterized by the IFAT ((+)) /DTH ((-)) profile with a doubtful immunogenetic resistance against infection.
Resumo:
BACKGROUND Allopurinol is a main cause of severe cutaneous adverse reactions (SCAR). How allopurinol induces hypersensitivity remains unknown. Pre-disposing factors are the presence of the HLA-B*58:01 allele, renal failure and possibly the dose taken. OBJECTIVE Using an in vitro model, we sought to decipher the relationship among allopurinol metabolism, HLA-B*58:01 phenotype and drug concentrations in stimulating drug-specific T cells. METHODS Lymphocyte transformation test (LTT) results of patients who had developed allopurinol hypersensitivity were analysed. We generated allopurinol or oxypurinol-specific T cell lines (ALP/OXP-TCLs) from allopurinol naïve HLA-B*58:01(+) and HLA-B*58:01(-) individuals using various drug concentrations. Their reactivity patterns were analysed by flow cytometry and (51) Cr release assay. RESULTS Allopurinol allergic patients are primarily sensitized to oxypurinol in a dose-dependent manner. TCL induction data show that both the presence of HLA-B*58:01 allele and high concentration of drug are important for the generation of drug-specific T cells. The predominance of oxypurinol-specific lymphocyte response in allopurinol allergic patients can be explained by the rapid conversion of allopurinol to oxypurinol in vivo rather than to its intrinsic immunogenicity. OXP-TCLs do not recognize allopurinol and vice versa. Finally, functional avidity of ALP/OXP-TCL is dependent on both the induction dose and HLA-B*58:01 status. CONCLUSIONS AND CLINICAL RELEVANCE This study establishes the important synergistic role of drug concentration and HLA-B*58:01 allele in the allopurinol or oxypurinol-specific T cell responses. Despite the prevailing dogma that Type B adverse drug reactions are dose independent, allopurinol hypersensitivity is primarily driven by oxypurinol-specific T cell response in a dose-dependent manner, particular in the presence of HLA-B*58:01 allele.
Resumo:
Exposure to UVB radiation induces local and systemic immune suppression, evidenced by inhibition of the contact hypersensitivity response (CHS). Epidermal dendritic cells, the primary antigen presenting cells responsible for the induction of CHS, are profoundly altered in phenotype and function by UVB exposure and possess UV-specific DNA damage upon migrating to skin-draining lymph nodes. Expression of the proapoptotic protein FasL has been demonstrated in both skin and lymph node cells following UVB exposure. Additionally, functional FasL expression has recently been demonstrated to be required in the phenomenon of UV-induced immune suppression. To test the hypothesis that FasL expression by DNA-damaged Langerhans cells migrating to the skin-draining lymph nodes is a crucial event in the generation of this phenomenon, mice were given a single 5KJ/m2 UV-B exposure and sensitized to 0.5% FITC through the exposed area. Dendritic cells (DC) harvested from skin-draining lymph nodes (DLN) 18 hours following sensitization by magnetic CD11c-conjugated microbeads expressed high levels of Iab, CD80 and CD86, DEC-205 and bore the FITC hapten, suggesting epidermal origin. Radioimmunoassay of UV-specific DNA damage showed that DC contained the vast majority of cyclobutane pyrimidine dimers (CPDs) found in the DLN after UVB and exhibited increased FasL mRNA expression, a result which correlated with greatly increased FasL-mediated cytotoxicity. The ability of DCs to transfer sensitization to naïve hosts was lost following UVB exposure, a phenomenon which required DC FasL expression, and was completely reversed by cutaneous DNA repair. Collectively, these results demonstrate the central importance of DNA damage-induced FasL expression on migrating dendritic cells in mediating UV-induced suppression of contact hypersensitivity. ^
Resumo:
There is increasing epidemiological and molecular evidence that cutaneous melanomas arise through multiple causal pathways. The purpose of this study was to explore the relationship between germline and somatic mutations in a population-based series of melanoma patients to reshape and refine the divergent pathway model for melanoma. Melanomas collected from 123 Australian patients were analyzed for melanocortin-1 receptor (MC1R) variants and mutations in the BRAF and NRAS genes. Detailed phenotypic and sun exposure data were systematically collected from all patients. We found that BRAF-mutant melanomas were significantly more likely from younger patients and those with high nevus counts, and were more likely in melanomas with adjacent neval remnants. Conversely, BRAF-mutant melanomas were significantly less likely in people with high levels of lifetime sun exposure. We observed no association between germline MC1R status and somatic BRAF mutations in melanomas from this population. BRAF-mutant melanomas have different origins from other cutaneous melanomas. These data support the divergent pathways hypothesis for melanoma, which may require a reappraisal of targeted cancer prevention activities.
Resumo:
The most common human cancers are malignant neoplasms of the skin. Incidence of cutaneous melanoma is rising especially steeply, with minimal progress in non-surgical treatment of advanced disease. Despite significant effort to identify independent predictors of melanoma outcome, no accepted histopathological, molecular or immunohistochemical marker defines subsets of this neoplasm. Accordingly, though melanoma is thought to present with different 'taxonomic' forms, these are considered part of a continuous spectrum rather than discrete entities. Here we report the discovery of a subset of melanomas identified by mathematical analysis of gene expression in a series of samples. Remarkably, many genes underlying the classification of this subset are differentially regulated in invasive melanomas that form primitive tubular networks in vitro, a feature of some highly aggressive metastatic melanomas. Global transcript analysis can identify unrecognized subtypes of cutaneous melanoma and predict experimentally verifiable phenotypic characteristics that may be of importance to disease progression.