999 resultados para cultivation period
Resumo:
An experiment was laid down in a screen house to determine the distribution of weed seeds at different soil depths and periods of cultivation of sugarcane in Ilorin, Nigeria. Soil samples from different depth levels (0-10 cm, 11-20 cm and 21-30 cm) were collected after harvesting of canes from three different land use fields (continuous sugarcane cultivation for > 20 years, continuous sugarcane cultivation for < 10 years after long fallow period and continuous sugarcane cultivation for < 5 years after long fallow period) in November, 2012. One kilogram of the sieved composite soil samples was arranged in the screen house and watered at alternate days. Germinating weed seedlings were identified, counted and then pulled out for the period of 8 months. Land use and soil depth had a highly significant (p £ 0.05) effect on the total number of weeds that emerged from the soil samples. The 010 cm of the soil depth had the highest weed seedlings that emerged. There was an equal weed seed distribution at the 11-20 cm and 21-30 cm depths of the soil. Sugarcane fields which have been continuously cultivated for a long period of time with highly disturbing soil tillage practices tend to have larger seed banks in deeper soil layers (11-20 cm and 21-30 cm) while recently opened fields had significantly larger seed banks at the 0-10 cm soil sampling depth.
Resumo:
Consumption of green leafy vegetables is associated with reduced risk of several types of cancer and cardiovascular disease. These beneficial effects are attributed to a range of phytochemicals including flavonoids and glucosinolates, both of which are found in high levels in Brassicaceous crops. Rocket is the general name attributed to cultivars of Eruca sativa and Diplotaxis tenufolia, known as salad rocket and wild rocket, respectively. We have shown that different light levels during the cultivation period of these crops have a significant impact on the levels of flavonoids present in the crop at harvest, with over 15-fold increase achieved in quercetin, isorhamnetin, and cyanidin in high light conditions. Postharvest storage further affects the levels of both flavonoids and glucosinolates, with cyanidin increasing during shelf life and some glucosinolates, such as glucoiberverin, being reduced over the same storage period. In vitro assays using human colon cell lines demonstrate that glucosinolate-rich extracts of Eruca sativa cv. Sky, but not Diplotaxis tenufolia cv. Voyager, confer significant resistance to oxidative stress on the cells, which is indicative of the chemoprotective properties of the leaves from this species. Our findings indicate that both pre and postharvest environment and genotypic selection, when developing new lines of Brassicaceous vegetables, are important considerations with the goal of improving human nutrition and health.
Resumo:
Marketable chrysanthemums were produced in several different peat types. Only the plants in one of the dredged frozen black peats and one of the milled white peats had a significant lower shoot dry weight than those in one of the sod and milled white peats, respectively. As the N-contents of the fertilized peats show neither deficiency nor excess in nutrient supply, possibly they are not the reason for the differences in shoot dry weight. The air capacity, which is extremely low in both dredged frozen black peats and dropped further during the cultivation period due to decomposition, also cannot explain the differences in shoot dry weight sufficiently (R-2=0.44*; n=12). A close linear negative correlation (R-2=0.77**; n=12) was found between the CAT (VDLUFA) soluble Fe and the shoot dry weight. Therefore, the Fe-contents might be a quality factor of peat to be used as a growing medium.
Resumo:
Marketable chrysanthemums were produced in several different peat types. Only the plants in one of the dredged frozen black peats and one of the milled white peats had a significant lower shoot dry weight than those in one of the sod and milled white peats, respectively. As the N-contents of the fertilized peats show neither deficiency nor excess in nutrient supply, possibly they are not the reason for the differences in shoot dry weight. The air capacity, which is extremely low in both dredged frozen black peats and dropped further during the cultivation period due to decomposition, also cannot explain the differences in shoot dry weight sufficiently (R2=0.44*; n=12). A close linear negative correlation (R2=0.77** n=12) was found between the CAT (VDLUFA) soluble Fe and the shoot dry weight. Therefore, the Fecontents might be a quality factor of peat to be used as a growing medium.
Resumo:
Mestrado em Engenharia Química - Ramo Tecnologias de Protecção Ambiental
Resumo:
In vineyards, if phosphate is applied both before planting and at intervals during growth without consideration of technical criteria, the soil P fractions may be increased and their proportions altered. This study was carried out to evaluate the accumulation of P fractions and the parameters of the adsorption isotherm in a sandy Typic Hapludalf soil in vineyards with a history of successive and excessive phosphate fertilization. In December 2010, two vineyards were selected, one 4 and the other 15 years old, in Urussanga, State of Santa Catarina (Brazil). Three trenches were dug in each area and soil was collected from the 0-5, 5-10 and 10-20 cm depth ranges. The soil samples were dried in a forced-air oven, sieved and subjected to chemical analyses, P chemical fractionation and P adsorption isotherms. Excessive phosphate fertilization, before and during cultivation, particularly in the older vineyard and, consequently, with a longer history of phosphate fertilization, increased the inorganic P concentrations to the depth of 20 cm, especially in labile fractions extracted by anion exchange resin and NaHCO3 in the non-labile fraction, as well as in the non-labile fraction extracted by 1.0 mol L-1 HCl. The application of phosphate fertilizers and the long cultivation period increased the P levels in the organic labile fraction extracted by 0.5 mol L-1 NaHCO3, and especially in the moderately labile fraction extracted by 0.1 and 0.5 mol L-1 NaOH. Phosphate fertilization of older vineyards, i.e., cultivated for 15 years, increased the amounts of P desorbed in water, indicating a risk of contamination of surface waters and groundwater. The phosphate fertilization before planting, without considering the results of soil analysis, and during cultivation, disregarding the results of soil analysis, leaf analysis and expected yield, led to a reduction in the maximum P adsorption capacity in the 0-5 cm layer of vineyard 2, indicating saturation of part of the reactive particle adsorption sites.
Resumo:
The objective of this work was to evaluate the effectiveness of ruzigrass (Urochloaruziziensis) in enhancing soil-P availability in areas fertilized with soluble or reactive rock phosphates. The area had been cropped for five years under no-till, in a system involving soybean, triticale/black-oat, and pearl millet. Previously to the five-year cultivation period, corrective phosphorus fertilization was applied once on soil surface, at 0.0 and 80 kg ha-1 P2O5, as triple superphosphate or Arad rock phosphate. After this five-year period, plots received the same corrective P fertilization as before and ruzigrass was introduced to the cropping system in the stead of the other cover crops. Soil samples were taken (0-10 cm) after ruzigrass cultivation and subjected to soil-P fractionation. Soybean was grown thereafter without P application to seed furrow. Phosphorus availability in plots with ruzigrass was compared to the ones with spontaneous vegetation for two years. Ruzigrass cultivation increased inorganic (resin-extracted) and organic (NaHCO3) soil P, as well as P concentration in soybean leaves, regardless of the P source. However, soybean yield did not increase significantly due to ruzigrass introduction to the cropping system. Soil-P availability did not differ between soluble and reactive P sources. Ruzigrass increases soil-P availability, especially where corrective P fertilization is performed.
Resumo:
Rooting and acclimatization are limiting steps in plant micropropagation, especially in woody plant species. This study aimed to evaluate the IAA and IBA effect on the in vitro rooting and acclimatization of micropropagated shoots of Japanese plum (Prunus salicina Lindl.) cv. América. Shoots from 3 to 4 cm long were inoculated in MS medium with half salt and vitamin concentrations (MS/2) added with IAA and IBA (0, 0.25, 0.5, 0.75 and 1 mg L-1). After a 20-day period in in vitro cultivation, the shoots were evaluated, and then transferred to a greenhouse, and evaluated after 30 days. At the end of the in vitro cultivation period, no significant interactions were observed for number of roots per shoot and rooting percentage, but a significant effect was recorded for auxin type only, for which shoots grown in media added with IBA showed high values - 0.87 and 41.95%, respectively. A linear increase response from 1.45 to 5.75 cm was verified for root length of shoots cultivated in IBA medium; however, no significant effect was observed, and a 0.86 cm average root length per shoot grown in medium added with IAA was found. After 30 days of acclimatization period, the largest survival percentage was obtained from shoots cultivated in medium with 1 mg L-1 of IBA and IAA (88% and 92%, respectively). Although, IBA provided the highest in vitro rooting, most of the surviving shoots were those originated in IAA-added medium, probably because IBA promoted longer fibrous roots, less appropriate for transplant and soil fixation, as they are easily damaged. It was concluded that in vitro rooting with the addition of the highest IAA concentration (1 mg L-1) provided the greatest plant survival during the acclimatization period of the Japanese plum cv. América.
Resumo:
Four strains of Kappaphycus alvarezii were cultivated in the subtropical waters of Florianopolis, Santa Catarina State, Brazil (27 degrees 29`19 `` S/48 degrees 32` 28 `` W), from February 2009 to February 2010. Seaweeds were cultivated on floating raft near of mussel farms. Salinity ranged from 29 to 36 psu and temperature from 17.1 to 28.5 degrees C. Higher growth rates (5.12-4.29% day(-1)) were measured in summer and autumn, showing a positive correlation between growth rate and water temperature. Lower growth rates (0.54-0.32% day(-1)) occurred in winter, resulted mainly by biomass loss. Significant differences were observed among the strains in spring and the brown tetrasporophytic strain was the only one which failed to recover, being excluded of the experiments. The effect of cultivation periods (36, 42, and 97 days) on carrageenan yield, gel strength, and viscosity were analyzed. Carrageenan yields were higher for plants kept 42 days in the sea (28%), against 25% for 36 and 97 days. There were no significant differences in carrageenan yield among the strains analyzed. Viscosity increased with the increase of cultivation period, while gel strength seemed to vary at random. Tetrasporangia and cystocarps were not observed, and lost fragments did not attach outside the raft. In general, dissolved inorganic nitrogen concentration decreased around the cultivation area as compared to the mussel farm. Results show that cultivation of K. alvarezii is technically feasible in subtropical waters and can be associated with local mussel farms, mitigating the eutrophication and, eventually, increasing the economic return of the farmers.
Resumo:
O Brasil é um dos maiores produtores de carambola do mundo, entretanto há poucas informações científicas, especialmente estudos de nutrição mineral com mudas dessa frutífera. Objetivando contribuir com o conhecimento desse importante aspecto, desenvolveu-se estudo que permitisse avaliar o crescimento e o acúmulo de nutrientes em mudas de caramboleiras, cultivadas em solução nutritiva. O experimento foi realizado em parcelas subdivididas, sendo utilizadas como parcela as duas cultivares de caramboleira ('B-10' e 'Golden Star') e, como subparcelas, as cinco épocas de coleta de plantas, realizadas aos 208; 233; 258; 283 e 308 dias após o transplantio para a solução nutritiva. O delineamento foi inteiramente casualizado, com três repetições. As mudas foram cultivadas em vasos (8L) com solução nutritiva (pH=5,5 ± 0,5), com aeração. O experimento iniciou-se em 24-08-2005. Nos diferentes órgãos das mudas (folhas, caule e raízes), avaliaram-se o crescimento e o acúmulo de nutrientes, e os índices nutricionais. Não houve diferenças no crescimento e, em geral, no acúmulo da massa da matéria seca entre as duas cultivares. Houve acúmulo linear da massa da matéria seca das mudas de caramboleira com o tempo de cultivo, sendo maior nas folhas > caule > raízes. O período de maior acúmulo da massa de matéria seca e da taxa de crescimento relativo na planta inteira esteve compreendido entre 208 - 233 e 233 - 258 dias após o transplantio para a 'B-10' e a 'Golden Star', respectivamente.
Resumo:
Com o objetivo de avaliar o efeito da enxertia e do enriquecimento da água de irrigação com dióxido de carbono sobre o teor de N, P, K, Ca, Mg, S, Mn e Zn na parte aérea de plantas de pepino tipo japonês cultivados em ambiente protegido, foram conduzidos experimentos em duas épocas do ano. O delineamento experimental foi em blocos ao acaso com quatro tratamentos e quatro repetições. Os tratamentos foram plantas de pepino enxertadas e não enxertadas, irrigadas com água comum ou enriquecida com CO2, em uma concentração de 1 no primeiro semestre e 0,25 no segundo semestre. No final do ciclo da cultura, o CO2, influenciou unicamente no primeiro semestre os teores de K, Ca, Mg, S e Zn; enquanto o teor de N só alterou no segundo semestre. Não houve padrão de resposta consistente da enxertia sobre os teores de N, P, Mg e Zn; porém, plantas enxertadas apresentam maior teor de K e menor teor de Mg, S e Ca na sua parte aérea, ao final do ciclo da cultura, podendo estar relacionado com os sintomas de deficiências nutricionais observados em plantas de pepino enxertadas.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The objective of this work was to evaluate sweet potato cultivars with starch processing capability, on two cultivation periods, in the western region of Parana (Brazil). Sweet potato was grown at Marechal Candido Rondon, Parana State (24 degrees 33'40 '' S and 54 degrees 4'12 '' W), at a mean annual temperature between 14 and 28 degrees C. The experiment was designed in complete randomized blocks, in a factorial scheme of 4 cultivars (CNPH 003, CNPH 004, Brazlandia Roxa, and Brazlandia Rosada) and 2 cultivation periods (115 and 183 days), with four repetitions. The evaluated parameters were the root productivities (t ha(-1)) and the physical and chemical root composition (humidity, pH, acidity, starch, total soluble sugars and fibers). Data was submitted to all analysis of variance (Anova) and the means were compared by the Tukey test at 5% of probability, Results indicated that sweet potato yield at the cultivars was higher during the 183 day cultivation period (average of 9.14 t ha(-1)) than during the 115 day cultivation period (average of 4.25 t ha(-1)). Thus the CNPH 003 cultivar seems to be a better indication for starch extraction, due to the lowest fiber content in the root, the driest mass content and the largest yield of starch per area.
Resumo:
Pós-graduação em Agronomia (Ciência do Solo) - FCAV
Resumo:
Pós-graduação em Agronomia (Produção Vegetal) - FCAV