959 resultados para cucumber seedlings
Resumo:
A study was undertaken from 2004 to 2007 to investigate factors associated with decreased efficacy of metalaxyl to manage damping-off of cucumber in Oman. A survey over six growing seasons showed that growers lost up to 14.6% of seedlings following application of metalaxyl. No resistance to metalaxyl was found among Pythium isolates. Damping-off disease in the surveyed greenhouses followed two patterns. In most (69%) greenhouses, seedling mortality was found to occur shortly after transplanting and decrease thereafter (Phase-I). However, a second phase of seedling mortality (Phase-II) appeared 9-14 d after transplanting in about 31% of the surveyed greenhouses. Analysis of the rate of biodegradation of metalaxyl in six greenhouses indicated a significant increase in the rate of metalaxyl biodegradation in greenhouses, which encountered Phase-II damping-off. The half-life of metalaxyl dropped from 93 d in soil, which received no previous metalaxyl treatment to 14 d in soil, which received metalaxyl for eight consecutive seasons, indicating an enhanced rate of metalaxyl biodegradation after repeated use. Multiple applications of metalaxyl helped reduce the appearance of Phase-II damping-off. This appears to be the first report of rapid biodegradation of metalaxyl in greenhouse soils and the first report of its association with appearance of a second phase of mortality in cucumber seedlings.
Resumo:
We have determined relative levels of chloroplast leucine and tyrosine isoaccepting tRNAs and modified nucleotide contents from total tRNAs isolated from dark-grown, light-grown, N6-isopentenyladenine (i6A)-treated dark-grown and i6A-treated light-grown cucumber seedlings. Significant increases in the relative amounts of tRNA(Leu)2 and tRNA(Leu)3 were observed in the i6A-treated dark-grown seedlings compared to dark-grown, light-grown and i6A-treated light-grown seedlings. On the other hand, i6A-treated light-grown seedlings tRNA(Tyr)1 increased to 85% of total tRNAs(Tyr) from about 9% in light-grown seedlings and tRNA(Tyr)2 decreased to 15% compared with 91% in light-grown seedlings. Analysis of modified nucleotide of total tRNAs indicated that pT, pI, pm1A, pm5C, pGm, pm1G, pm2G and pm7G contents were significantly higher in the total tRNA of i6A-treated dark-grown seedlings than those from untreated dark-grown seedlings. Illumination of 8-day-old dark-grown seedlings for 12 h increased the contents of pT, pI, pGm and pm1G when compared to 8-day-old dark-grown seedlings with extended growth for 12 h in dark. On the contrary, i6A had no stimulatory effect in the contents of modified nucleotide in the light-grown seedlings.
Resumo:
The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA-treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had no detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These data indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.
Resumo:
The nucleotide sequence of a 714 bp BamHI-EcoRI fragment of cucumber chloroplast DNA was determined. The fragment contained a gene for tRNA(Leu) together with its flanking regions. The trnL(CAA) gene sequence is about 99% in similarity to broad bean, cauliflower, maize, spinach and tobacco corresponding genes. The relative expression level of the gene was determined by Northern (tRNA) gel blot and Northern (total cellular RNA) slot-blot analyses using the trnL gene probe in 6-day old etiolated cucumber seedlings and the seedlings that had been kept in the dark (dark-grown), treated with benzyladenine (BA) and kept in the dark (BA-treated dark-grown), illuminated (light-grown), and treated with BA and illuminated (BA- treated light-grown), for additional 4, 8 or 12 hr. The trnL transcripts and tRNA(Leu) levels in BA-treated dark-grown seedlings were 5 and 3 times higher, respectively after 4 hr BA treatment, while in the BA treated light-grown seedlings the level of trnL transcripts was only 3 times higher and had not detectable effect on mature tRNA(Leu) when compared to the time-4 hr dark-grown seedlings. However, the level of mature tRNA(Leu) did not show marked changes in the light-grown seedlings, whereas the level of trnL transcripts increases 3 times after 8 hr illumination of dark-grown seedlings. These date indicate that both light and cytokinin can signal changes in plastid tRNA gene expression. The possible regulatory mechanisms for such changes are discussed.
Resumo:
Cinnamate is the product of phenylalanine ammonialyase (PAL). This compound, a precursor of phenolics in plants, has been shown to be phytotoxic. Cinnamate inhibits PAL activity in cucumber seedlings. DL-phenylalanine has the same effect on the enzyme but does not affect growth. Actinomycin D and cycloheximide are phytotoxic and inhibit PAL. Production of a double-peg has been noticed in the seedlings, grown in the presence of actinomycin D. Light stimulates PAL activity in the seedling.
Resumo:
Seventy three isolates of Pythium aphanidermatum obtained from cucumber from four different regions of Oman and 16 isolates of muskmelon from the Batinah region in Oman were characterized for aggressiveness, sensitivity to metalaxyl and genetic diversity using AFLP fingerprinting. Twenty isolates of P. aphanidermatum from diverse hosts from different countries were also included in the study. Most isolates from Oman were found to be aggressive on cucumber seedlings and all were highly sensitive to metalaxyl (EC50 < 0•80 µg mL−1). Isolates from cucumber and muskmelon were as aggressive as each other on both hosts (P > 0.05), which implies a lack of host specialization in P. aphanidermatum on these two hosts in Oman. AFLP analysis of all isolates using four primer-pair combinations resolved 152 bands, of which 61 (~40%) were polymorphic. Isolates of P. aphanidermatum from Oman and other countries exhibited high genetic similarity (mean = 94.1%) and produced 59 different AFLP profiles. Analysis of molecular variance indicated that most AFLP variation among populations of P. aphanidermatum in Oman was associated with geographical regions (FST = 0.118; P < 0.0001), not hosts (FST = -0.004; P = 0.4323). These data were supported by the high rate of recovery (24%) of identical phenotypes between cucumber and muskmelon fields in the same region as compared to the low recovery (10%) across regions in Oman, which suggests more frequent movement of Pythium inoculum among muskmelon and cucumber fields in the same region compared to movement across geographically separated regions. However, recovering clones among regions and different countries may imply circulation of Pythium inoculum via common sources in Oman and also intercontinental spread of isolates.
Resumo:
A study was undertaken in 2004 and 2005 to characterize pathogens associated with damping-off of greenhouse-grown cucumber seedlings in 13 districts in Oman. Identification of Pythium to the species level was based on sequences of the internal transcribed spacer (ITS) of the ribosomal DNA. Of the 98 Pythium isolates collected during the survey, Pythium aphanidermatum, P. spinosum, P. splendens and P. oligandrum accounted for 76%, 22%, 1% and 1%, respectively. Pythium aphanidermatum was isolated from all of the districts, while P. spinosum was isolated from seven districts. Pathogenicity tests showed inter- and intraspecific variation in aggressiveness between Pythium species. Pythium aphanidermatum, P. spinosum and P. splendens were found to be highly aggressive at 25°C. However, the aggressiveness of P. spinosum decreased when the temperature was raised to 30°C, which was found to correspond to the lower frequency of isolation of P. spinosum in the warmer seasons, compared to the cooler time of the year. Pythium aphanidermatum exhibited limited intraspecific variation in the sequences of the ITS region of the rDNA and showed 100% similarity to the corresponding P. aphanidermatum sequences from GenBank. The ITS sequence data, as well as morphological characteristics of P. spinosum isolates, showed a high level of similarity within and between P. spinosum and P. kunmingense, and suggested that the two species were synonymous. This study represents the first report of P. spinosum, P. splendens and P. oligandrum in Oman.
Resumo:
A total of 24 isolates of Pythium spinosum from cucumber obtained from five regions in Oman were characterized for genetic diversity using amplified fragment length polymorphism (AFLP) fingerprinting and three isolates from the Netherlands, South Africa and Japan were included for comparison. Isolates from Oman were also characterized for aggressiveness on cucumber seedlings and sensitivity to metalaxyl. Identity of all isolates was confirmed using sequences of the internal transcribed spacer (ITS) region of the ribosomal DNA (rDNA), which showed more than 99% nucleotide similarity among all isolates. Using six primer-pair combinations, AFLP fingerprinting resolved 295 AFLP markers of which 193 were polymorphic among isolates from other countries and only six were polymorphic among isolates of P. spinosum from Oman. Seven different AFLP phenotypes of P. spinosum were recovered in Oman; two of them were found to contain over 79% of isolates and one was recovered from all regions in Oman. Phenotypes from Oman showed very high (?99%) levels of genetic similarity to each other compared to moderate (mean =53%) levels of genetic similarity with phenotypes from other countries. In addition, all isolates from Oman were found to be highly sensitive to metalaxyl and all were aggressive on cucumber seedlings at 25°C. The high genetic similarity among phenotypes of P. spinosum in Oman as well as recovering two major clones across regions may suggest that P. spinosum has been recently introduced in Oman via a common source.
Resumo:
2,4-Dinitrophenol and paranitrophenol are two major soil pollutants which are known to be metabolized by different soil microbes. Relative phytotoxicities of these parent compounds and their metabolic transformation products to the growth of cucumber seedlings were assessed. It was evident that such microbial transformations widely occurring in the soil are effective detoxification reactions and are beneficial for the plants.
Resumo:
The effects of La3+ on the antioxidant enzyme activities and the relative indices of cellular damage in cucumber seedling leaves were studied. When cucumber seedlings were treated with low concentrations of LaCl3 (0.002 and 0.02 mM), peroxidase (PO) activity increased, and catalase (CAT) activity was similar to that of control leaves at 0.002 mM La3+ and increased at 0.02 mM La3+, whereas superoxide dismutase (SOD) activity did not change significantly. The increase in the contents of chlorophyll (including chlorophylls a and b), carotenoids in parallel with the decrease in the level of malondialdehyde (MDA) suggested that low concentration of La3+ promoted plant growth. However, except the increase in SOD activity at 2 mM La3+, CAT and PO activities and the contents of pigments decreased at high concentrations of La3+ (0.2 and 2 mM), leading to the increase of MDA content and the inhibition of plant growth. It is suggested that lanthanum ion is involved in the regulation of active oxygen-scavenging enzyme activities during plant growth.
Resumo:
The effects of La3+ on the uptake of trace elements (Se, Co, V, and Tc) in cucumber plants were studied by a radioactive multitracer technique. It was observed that the uptake and distribution of these trace elements in roots, stems, and leaves are different under different La3+, treatments. Furthermore, in the control, the plant accumulates Se-75, Co-56, and V-48 all in the order roots>leaves>stems, whereas Tc-95m was in the order leaves>stems>roots. The accumulations of Se-75 and Tc-95m in plants treated with different La3+ concentration were in the same order as those in the control, but the uptakes percentages of other kinds of element changed differently. The results indicate that lanthanum treatments to a growing cucumber lead to the change of uptake of trace elements, which suggest that a rare earth element is directly or indirectly involved in the ion transport of the plant and affects plant growth by regulating the uptake and distribution of elements that influence the plant cell physiology and biochemistry.
Resumo:
Studies were carried out in Brazil to study the inheritance of tolerance to Zucchini yellow mosaic virus (ZYMV) in cucumber cv. Formosa. This cultivar was individually crossed with two cucumber lines from different varietal types (L(b) from a Brazilian type, and L(j) from a Japanese type), both susceptible to the virus. Two experiments, one for each line, were separately carried out, where 6 treatments (parents, generations F1, F2 and F1BC1 for both parents) were evaluated in a randomized block design with 5 repetitions. Cotyledons of 2-week-old cucumber seedlings were inoculated with ZYMV. Only the plants that did not show symptoms up to 63 days post inoculation were considered as tolerant. A chi-square (chi(2)) analysis for assessing segregation from F2 and both F1BC1, led to the conclusion that the tolerance found in cv. Formosa is determined by a recessive gene.
Resumo:
The prospection of biological control agents in similar environments to the microbe application improves the chances of microorganisms establishment added to the environment. The low survival of these beneficial microorganisms added to hydroponic environment is a problem for the growth promotion and root rot biological control success in hydroponic crops. Because of the environmental similarity between hydroponic systems and mangrove ecosystems, the aim of this work was to evaluate the ability of mangrove microbes to control root rot caused by Pythium aphanidermatum and to improve plant growth in hydroponic cucumbers. Among the 28 strains evaluated for disease control in small-hydroponic system using cucumber seedlings, Gordonia rubripertincta SO-3B-2 alone or in combination with Pseudomonas stutzeri (MB-P3A- 49, MB-P3-C68 and SO-3L-3), and Bacillus cereus AVIC-3-6 increased the seedlings survival and were subsequently evaluated in hydroponic cucumbers in a greenhouse. Bacillus cereus AVIC-3-6 protected the plants from stunting caused by the pathogen and Gordonia rubripertincta SO-3B-2 and Pseudomonas stutzeri MB-P3A-49 increased the plant growth. We concluded that microorganisms from mangroves are useful as biocontrol agents and for improving plant growth in hydroponic crops.