985 resultados para cs.DC
Resumo:
We analyze ways by which people decompose into groups in distributed systems. We are interested in systems in which an agent can increase its utility by connecting to other agents, but must also pay a cost that increases with the size of the sys- tem. The right balance is achieved by the right size group of agents. We formulate and analyze three intuitive and realistic games and show how simple changes in the protocol can dras- tically improve the price of anarchy of these games. In partic- ular, we identify two important properties for a low price of anarchy: agreement in joining the system, and the possibil- ity of appealing a rejection from a system. We show that the latter property is especially important if there are some pre- existing constraints regarding who may collaborate (or com- municate) with whom.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) takes only O(n-vlog3/2n) messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartiten-node graph G in O(t(G)) time and O(t(G)n-vlog3/2n) messages, where t(G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficientdeterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that O(n-v) messages are needed for any O(1) time leader election algorithm which succeeds with high probability. It is also shown that O(n 1/3) messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
Many modern networks are \emph{reconfigurable}, in the sense that the topology of the network can be changed by the nodes in the network. For example, peer-to-peer, wireless and ad-hoc networks are reconfigurable. More generally, many social networks, such as a company's organizational chart; infrastructure networks, such as an airline's transportation network; and biological networks, such as the human brain, are also reconfigurable. Modern reconfigurable networks have a complexity unprecedented in the history of engineering, resembling more a dynamic and evolving living animal rather than a structure of steel designed from a blueprint. Unfortunately, our mathematical and algorithmic tools have not yet developed enough to handle this complexity and fully exploit the flexibility of these networks. We believe that it is no longer possible to build networks that are scalable and never have node failures. Instead, these networks should be able to admit small, and maybe, periodic failures and still recover like skin heals from a cut. This process, where the network can recover itself by maintaining key invariants in response to attack by a powerful adversary is what we call \emph{self-healing}. Here, we present several fast and provably good distributed algorithms for self-healing in reconfigurable dynamic networks. Each of these algorithms have different properties, a different set of gaurantees and limitations. We also discuss future directions and theoretical questions we would like to answer. %in the final dissertation that this document is proposed to lead to.
Resumo:
Modern networks are large, highly complex and dynamic. Add to that the mobility of the agents comprising many of these networks. It is difficult or even impossible for such systems to be managed centrally in an efficient manner. It is imperative for such systems to attain a degree of self-management. Self-healing i.e. the capability of a system in a good state to recover to another good state in face of an attack, is desirable for such systems. In this paper, we discuss the self-healing model for dynamic reconfigurable systems. In this model, an omniscient adversary inserts or deletes nodes from a network and the algorithm responds by adding a limited number of edges in order to maintain invariants of the network. We look at some of the results in this model and argue for their applicability and further extensions of the results and the model. We also look at some of the techniques we have used in our earlier work, in particular, we look at the idea of maintaining virtual graphs mapped over the existing network and assert that this may be a useful technique to use in many problem domains.
Resumo:
Existing compact routing schemes, e.g., Thorup and Zwick [SPAA 2001] and Chechik [PODC 2013], often have no means to tolerate failures, once the system has been setup and started. This paper presents, to our knowledge, the first self-healing compact routing scheme. Besides, our schemes are developed for low memory nodes, i.e., nodes need only O(log2 n) memory, and are thus, compact schemes.
We introduce two algorithms of independent interest: The first is CompactFT, a novel compact version (using only O(log n) local memory) of the self-healing algorithm Forgiving Tree of Hayes et al. [PODC 2008]. The second algorithm (CompactFTZ) combines CompactFT with Thorup-Zwick’s treebased compact routing scheme [SPAA 2001] to produce a fully compact self-healing routing scheme. In the self-healing model, the adversary deletes nodes one at a time with the affected nodes self-healing locally by adding few edges. CompactFT recovers from each attack in only O(1) time and ∆ messages, with only +3 degree increase and O(log∆) graph diameter increase, over any sequence of deletions (∆ is the initial maximum degree).
Additionally, CompactFTZ guarantees delivery of a packet sent from sender s as long as the receiver has not been deleted, with only an additional O(y log ∆) latency, where y is the number of nodes that have been deleted on the path between s and t. If t has been deleted, s gets informed and the packet removed from the network.
Resumo:
We advocate the Loop-of-stencil-reduce pattern as a means of simplifying the implementation of data-parallel programs on heterogeneous multi-core platforms. Loop-of-stencil-reduce is general enough to subsume map, reduce, map-reduce, stencil, stencil-reduce, and, crucially, their usage in a loop in both data-parallel and streaming applications, or a combination of both. The pattern makes it possible to deploy a single stencil computation kernel on different GPUs. We discuss the implementation of Loop-of-stencil-reduce in FastFlow, a framework for the implementation of applications based on the parallel patterns. Experiments are presented to illustrate the use of Loop-of-stencil-reduce in developing data-parallel kernels running on heterogeneous systems.
Resumo:
By providing vehicle-to-vehicle and vehicle-to-infrastructure wireless communications, vehicular ad hoc networks (VANETs), also known as the “networks on wheels”, can greatly enhance traffic safety, traffic efficiency and driving experience for intelligent transportation system (ITS). However, the unique features of VANETs, such as high mobility and uneven distribution of vehicular nodes, impose critical challenges of high efficiency and reliability for the implementation of VANETs. This dissertation is motivated by the great application potentials of VANETs in the design of efficient in-network data processing and dissemination. Considering the significance of message aggregation, data dissemination and data collection, this dissertation research targets at enhancing the traffic safety and traffic efficiency, as well as developing novel commercial applications, based on VANETs, following four aspects: 1) accurate and efficient message aggregation to detect on-road safety relevant events, 2) reliable data dissemination to reliably notify remote vehicles, 3) efficient and reliable spatial data collection from vehicular sensors, and 4) novel promising applications to exploit the commercial potentials of VANETs. Specifically, to enable cooperative detection of safety relevant events on the roads, the structure-less message aggregation (SLMA) scheme is proposed to improve communication efficiency and message accuracy. The scheme of relative position based message dissemination (RPB-MD) is proposed to reliably and efficiently disseminate messages to all intended vehicles in the zone-of-relevance in varying traffic density. Due to numerous vehicular sensor data available based on VANETs, the scheme of compressive sampling based data collection (CS-DC) is proposed to efficiently collect the spatial relevance data in a large scale, especially in the dense traffic. In addition, with novel and efficient solutions proposed for the application specific issues of data dissemination and data collection, several appealing value-added applications for VANETs are developed to exploit the commercial potentials of VANETs, namely general purpose automatic survey (GPAS), VANET-based ambient ad dissemination (VAAD) and VANET based vehicle performance monitoring and analysis (VehicleView). Thus, by improving the efficiency and reliability in in-network data processing and dissemination, including message aggregation, data dissemination and data collection, together with the development of novel promising applications, this dissertation will help push VANETs further to the stage of massive deployment.
Resumo:
Cd(0.75)PS(3)A(0.5)(H2O)(y) [A = Na, K and Cs], synthesized by the ion-exchange intercalation reaction of the insulating layered CdPS3, exhibits interesting electrical properties. The electrical properties are strongly dependent on the extent of hydration of the alkali ion which resides in the interlamellar space. In the potassium and caesium ion-exchanged compounds, y = I, the lattice expansion is similar to 3 Angstrom and the electric response characteristic of a dielectric. In the as prepared A = Na compound, y = 2, the lattice expansion is 5.6 Angstrom, the compound is conducting with a DC conductance of 3 x 10(-5) S cm(-1) at 300 K. Cd0.75PS3Na0.5(H2O)(y), y = 2, on evacuation or on heating looses water, reversibly, to form a y = 1 phase with electrical properties similar to that of the K and Cs ion exchange intercalation compounds.
Resumo:
Nanocrystalline tin oxide (SnO2) material of different particle size was synthesized using gel combustion method by varying oxidizer (HNO3) and keeping fuel as a constant. The prepared samples were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscope (SEM) and Energy Dispersive Analysis X-ray Spectroscope (EDAX). The effect of oxidizer in the gel combustion method was investigated by inspecting the particle size of nano SnO2 powder. The particle size was found to be increases with the increase of oxidizer from 8 to 12 moles. The X-ray diffraction patterns of the calcined product showed the formation of high purity tetragonal tin (IV) oxide with the particle size in the range of 17 to 31 nm which was calculated by Scherer's formula. The particles and temperature dependence of direct (DC) electrical conductivity of SnO2 nanomaterial was studied using Keithley source meter. The DC electrical conductivity of SnO2 nanomaterial increases with the temperature from 80 to 300K and decrease with the particle size at constant temperature.
Resumo:
There is a trade off between a number of output voltage levels and the reliability and efficiency of a multilevel converter. A new configuration of diode-clamped multilevel inverters with a different combination of DC link capacitors voltage has been proposed in this paper. Two different symmetrical and asymmetrical unequal arrangements for a four-level diode-clamped inverter have been compared, in order to find an optimum arrangement with lower switching losses and optimised output voltage quality. The simulation and hardware results for a four-level inverter show that the asymmetrical configuration can obtain more output voltage levels with the same number of components compared with a conventional four-level inverter and this will lead to the reduction of the harmonic content of the output voltage. A new family of multi-output DC-DC converters with a simple control strategy has been utilised as a front-end converter to supply the DC link capacitor voltages for the optimised configuration.
Resumo:
This paper presents a new DC-DC Multi-Output Boost (MOB) converter which can share its total output between different series of output voltages for low and high power applications. This configuration can be utilised instead of several single output power supplies. This is a compatible topology for a diode-clamed inverter in the grid connection systems, where boosting low rectified output-voltage and series DC link capacitors is required. To verify the proposed topology, steady state and dynamic analysis of a MOB converter are examined. A simple control strategy has been proposed to demonstrate the performance of the proposed topology for a double-output boost converter. The topology and its control strategy can easily be extended to offer multiple outputs. Simulation and experimental results are presented to show the validity of the control strategy for the proposed converter.
Resumo:
Purpose Multi-level diode-clamped inverters have the challenge of capacitor voltage balancing when the number of DC-link capacitors is three or more. On the other hand, asymmetrical DC-link voltage sources have been applied to increase the number of voltage levels without increasing the number of switches. The purpose of this paper is to show that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages. Design/methodology/approach A family of multi-output DC-DC converters is presented in this paper. The application of these converters is to convert the output voltage of a photovoltaic (PV) panel to regulate DC-link voltages of an asymmetrical four-level diode-clamped inverter utilized for domestic applications. To verify the versatility of the presented topology, simulations have been directed for different situations and results are presented. Some related experiments have been developed to examine the capabilities of the proposed converters. Findings The three-output voltage-sharing converters presented in this paper have been mathematically analysed and proven to be appropriate to improve the quality of the residential application of PV by means of four-level asymmetrical diode-clamped inverter supplying highly resistive loads. Originality/value This paper shows that an appropriate multi-output DC-DC converter can resolve the problem of capacitor voltage balancing and utilize the asymmetrical DC-link voltages advantages and that there is a possibility of operation at high-modulation index despite reference voltage magnitude and power factor variations.
Resumo:
This thesis reports on the investigations, simulations and analyses of novel power electronics topologies and control strategies. The research is financed by an Australian Research Council (ARC) Linkage (07-09) grant. Therefore, in addition to developing original research and contributing to the available knowledge of power electronics, it also contributes to the design of a DC-DC converter for specific application to the auxiliary power supply in electric trains. Specifically, in this regard, it contributes to the design of a 7.5 kW DC-DC converter for the industrial partner (Schaffler and Associates Ltd) who supported this project. As the thesis is formatted as a ‘thesis by publication’, the contents are organized around published papers. The research has resulted in eleven papers, including seven peer reviewed and published conference papers, one published journal paper, two journal papers accepted for publication and one submitted journal paper (provisionally accepted subject to few changes). In this research, several novel DC-DC converter topologies are introduced, analysed, and tested. The similarity of all of the topologies devised lies in their ‘current circulating’ switching state, which allows them to store some energy in the inductor, as extra inductor current. The stored energy may be applied to enhance the performance of the converter in the occurrence of load current or input voltage disturbances. In addition, when there is an alternating load current, the ability to store energy allows the converter to perform satisfactorily despite frequently and highly varying load current. In this research, the capability of current storage has been utilised to design topologies for specific applications, and the enhancement of the performance of the considered applications has been illustrated. The simplest DC-DC converter topology, which has a ‘current circulating’ switching state, is the Positive Buck-Boost (PBB) converter (also known as the non-inverting Buck-Boost converter). Usually, the topology of the PBB converter is operating as a Buck or a Boost converter in applications with widely varying input voltage or output reference voltage. For example, in electric railways (the application of our industrial partner), the overhead line voltage alternates from 1000VDC to 500VDC and the required regulated voltage is 600VDC. In the course of this research, our industrial partner (Schaffler and Associates Ltd) industrialized a PBB converter–the ‘Mudo converter’–operating at 7.5 kW. Programming the onboard DSP and testing the PBB converter in experimental and nominal power and voltage was part of this research program. In the earlier stages of this research, the advantages and drawbacks of utilization of the ‘current circulating’ switching state in the positive Buck-Boost converter were investigated. In brief, the advantages were found to be robustness against input voltage and current load disturbances, and the drawback was extra conduction and switching loss. Although the robustness against disturbances is desirable for many applications, the price of energy loss must be minimized to attract attention to the utilization of the PBB converter. In further stages of this research, two novel control strategies for different applications were devised to minimise the extra energy loss while the advantages of the positive Buck-Boost converter were fully utilized. The first strategy is Smart Load Controller (SLC) for applications with pre-knowledge or predictability of input voltage and/or load current disturbances. A convenient example of these applications is electric/hybrid cars where a master controller commands all changes in loads and voltage sources. Therefore, the master controller has a pre-knowledge of the load and input voltage disturbances so it can apply the SLC strategy to utilize robustness of the PBB converter. Another strategy aiming to minimise energy loss and maximise the robustness in the face of disturbance is developed to cover applications with unexpected disturbances. This strategy is named Dynamic Hysteresis Band (DHB), and is used to manipulate the hysteresis band height after occurrence of disturbance to reduce dynamics of the output voltage. When no disturbance has occurred, the PBB converter works with minimum inductor current and minimum energy loss. New topologies based on the PBB converter have been introduced to address input voltage disturbances for different onboard applications. The research shows that the performance of applications of symmetrical/asymmetrical multi-level diode-clamped inverters, DC-networks, and linear-assisted RF amplifiers may be enhanced by the utilization of topologies based on the PBB converter. Multi-level diode-clamped inverters have the problem of DC-link voltage balancing when the power factor of their load closes to unity. This research has shown that this problem may be solved with a suitable multi-output DC-DC converter supplying DClink capacitors. Furthermore, the multi-level diode-clamped inverters supplied with asymmetrical DC-link voltages may improve the quality of load voltage and reduce the level of Electromagnetic Interference (EMI). Mathematical analyses and experiments on supplying symmetrical and asymmetrical multi-level inverters by specifically designed multi-output DC-DC converters have been reported in two journal papers. Another application in which the system performance can be improved by utilization of the ‘current circulating’ switching state is linear-assisted RF amplifiers in communicational receivers. The concept of ‘linear-assisted’ is to divide the signal into two frequency domains: low frequency, which should be amplified by a switching circuit; and the high frequency domain, which should be amplified by a linear amplifier. The objective is to minimize the overall power loss. This research suggests using the current storage capacity of a PBB based converter to increase its bandwidth, and to increase the domain of the switching converter. The PBB converter addresses the industrial demand for a DC-DC converter for the application of auxiliary power supply of a typical electric train. However, after testing the industrial prototype of the PBB converter, there were some voltage and current spikes because of switching. To attenuate this problem without significantly increasing the switching loss, the idea of Active Gate Signalling (AGS) is presented. AGS suggests a smart gate driver that selectively controls the switching process to reduce voltage/current spikes, without unacceptable reduction in the efficiency of switching.