981 resultados para cryo-rolling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sheets of precipitate hardenable 2024 aluminium have been processed by rolling at liquid nitrogen temperature in order to refine the microstructure. A number of different aging/heat treating procedures have been utilised that have resulted in significantly different mechanical properties. The cryo-rolled material was heat treated at 150 °C for varying times and the resulting mechanical properties evaluated as a function of this holding time. The resulting properties were found to be strongly influenced by precipitates that formed either during the aging step, rolling process or the subsequent heat treatment. The formability of the cryo-rolled and heat treated material has been investigated using a limiting dome height test (Erichsen cupping test).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The present study addresses the evolution of texture and microstructure during annealing in a cryorolled copper. Transition from copper to brass texture during the cryo-rolling has been illustrated. Twinning and interaction between twins and shear bands have been found to play the important role in grain refinement and strengthening. The low temperature vacancy clustering and its effect on the recrystallization have been experimentally demonstrated. Fine scale twinning, and grain refinement have been attributed to the higher yield strength found in the case of samples subjected to cryo-rolling. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Commercial purity aluminium plate was reduced by rolling under nitrogen in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Analysis of the microstructure showed that the material produced in this way had an ul-trafine grained microstructure. The sheet was roll formed at room temperature to a V-section using commercial roll forming equipment. Two sets of experiments were per-formed; one with a 15 mm radius in the base of the V and the other with a 5 mm radius. The performance in terms of final shape and springback is compared with the same part shape formed by V-die bending. The mechanical properties of the sheet were determined using the tensile test. It has been found that even if the total tensile elongation is close to zero and bending of the material is very limited, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ultrafine-grain aluminium sheet was produced by rolling at cryogenic (CR) and at room temperature (RTR). Commercial purity aluminium plate was reduced in 30 passes from an initial material thickness of 10 mm to a final thickness of 2 mm (80% reduction). Tensile stress and strength were significantly increased while total elongation was drastically reduced. It was found that despite the low tensile elongation both materials are able to accommodate high localised strains in the neck leading to a high reduction in area. The formability of the material was further investigated in bending operations. A minimum bending radius of 6 mm (CR) and 5 mm (RTR) was found and pure bending tests showed homogeneous forming behaviour for both materials. In V-die bending the cryo-rolled material showed strain localisations across the final radius and kinking of the sample. It has been found that even if the total elongation in tension is close to zero leading to early failure in V-die bending, ultra-fine grained and low ductile sheet metals can be roll formed to simple section shapes with small radii using commercial roll forming equipment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ultrafine-grained aluminium was produced by cryo-rolling and their deformation response under cyclic loading was investigated. Shear banding and grain coarsening were recognized as the main damage mechanism reducing their performance under cyclic loading. However presence of precipitates in ultrafine-grained A1 can actively hinder the operation of cyclic softening mechanisms and increase microstructural stability under cyclic loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A complete understanding of how grain refinement, grain size, and processing affect the corrosion resistance of different alloys has not yet been fully developed. Determining a definitive 'grain size-corrosion resistance' relationship, if one exists, is inherently complex as the processing needed to achieve grain refinement also imparts other changes to the microstructure (such as texture, internal stress, and impurity segregation). This work evaluates how variation in grain size and processing impact the corrosion resistance of high purity aluminium. Aluminium samples with a range of grain sizes, from ∼100 μm to ∼2000 μm, were produced using different processing routes, including cold rolling, cryo rolling, equal channel angular pressing, and surface mechanical attrition treatment. Evaluation of all the samples studied revealed a tendency for corrosion rate to decrease as grain size decreases. This suggests that a Hall-Petch type relationship may exist for corrosion rate and grain size. This phenomenon, discussed in the context of grain refinement and processing, reveals several interesting and fundamental relationships.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The data is derived from an investigation into the microstructural changes of nanostructure Al (produced by cryo-rolling) in response to cyclic loading using electron microscopy and EBSD. The aim is to develop a better understanding of the deformation mechanisms in ultrafine grained/nanostructure metals under cyclic loading conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper explores a new interpretation of experiments on foil rolling. The assumption that the roll remains convex is relaxed so that the strip profile may become concave, or thicken in the roll gap. However, we conjecture that the concave profile is associated with phenomena which occur after the rolls have stopped. We argue that the yield criterion must be satisfied in a nonconventional manner if such a phenomenon is caused plastically. Finite element analysis on an extrusion problem appears to confirm this conjecture.