913 resultados para crustacean hyperglaecemic hormone


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Date of Acceptance: 20/12/2015 This work was funded by BBSRC-LINK grant # BB/J01009X/1 and Vita Europe Ltd. We are grateful to the Scottish Beekeepers Association, especially Mr Phil McAnespie in supporting this work at its inception. We acknowledge partial funding from a Genesis Faraday SPARK Award, part of a Scottish Government SEEKIT project for the early part of this work. We are grateful to Prof David Evans for his advice on Varroa destructor viruses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In crustaceans, a range of physiological processes involved in ovarian maturation occurs in organs of the cephalothorax including the hepatopancrease, mandibular and Y-organ. Additionally, reproduction is regulated by neuropeptide hormones and other proteins released from secretory sites within the eyestalk. Reproductive dysfunction in captive-reared prawns, Penaeus monodon, is believed to be due to deficiencies in these factors. In this study, we investigated the expression of gene transcripts in the cephalothorax and eyestalk from wild-caught and captive-reared animals throughout ovarian maturation using custom oligonucleotide microarray screening. We have isolated numerous transcripts that appear to be differentially expressed throughout ovarian maturation and between wild-caught and captive-reared animals. In the cephalothorax, differentially expressed genes included the 1,3-beta-D-glucan-binding high-density lipoprotein, 2/3-oxoacyl-CoA thiolase and vitellogenin. In the eyestalk, these include gene transcripts that encode a protein that modulates G-protein coupled receptor activity and another that encodes an architectural transcription factor. Each may regulate the expression of reproductive neuropeptides, such as the crustacean hyperglycaemic hormone and molt-inhibiting hormone. We could not identify differentially expressed transcripts encoding known reproductive neuropeptides in the eyestalk of either wild-caught or captive-reared prawns at any ovarian maturation stage, however, this result may be attributed to low relative expression levels of these transcripts. In summary, this study provides a foundation for the study of target genes involved in regulating penaeid reproduction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

About 80 years ago, the neurosecretory eyestalk structures and their role in endocrine regulation was recognized in crustaceans. After the recognition it took half a century to identify the first peptide hormone. Till date a large number of homologous peptides of crustacean hyperglycaemic hormone and moult-inhibiting hormone have been identified, consequently they are called the CHH family hormones. This family comprises of highly multifunctional peptides which according to sequences and precursor structures can be divided into two subfamilies, type-I (CHH/ITP) and II (MIH, MOIH, VIH/GIH) (Webster et al., 2012). The XO-SG complex has been the major site of the two subfamilies. The advent of molecular techniques resulted in the characterization of different precursors of CHH, MIH and GIH; these hormones consist of a signal peptide, but only the preprohormone of CHHs contain a precursor- related peptide (CPRP) located between the signal and the mature hormone (Weidemann et al., 1989; Klein et al., 1993b; De Kleijn and Van Herp, 1995). The essentialities of the gene structure comply with the functions of the CHH family hormones. The CHH family hormone functions are inhibitory as well as stimulatory in the process of reproduction and maturation

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Technological advances in gear and fishing practices have driven the global expansion of the American lobster live seafood market. These changes have had a positive effect on the lobster industry by increasing capture efficiency. However, it is unknown what effect these improved methods will have on the post-capture fitness and survival of lobsters. This project utilized a repeated measures design to compare the physiological changes that occur in lobsters over time as the result of differences in depth, hauling rate, and storage methodology. The results indicate that lobsters destined for long distance transport or temporary storage in pounds undergo physiological disturbance as part of the capture process. These changes are significant over time for total hemocyte counts, crustacean hyperglycemic hormone, L-lactate, ammonia, and glucose. Repeated measures multivariate analysis of variance (MANOVA) for glucose indicates a significant interaction between depth and storage methodology over time for non-survivors. A Gram-negative bacterium, Photobacterium indicum, was identified in pure culture from hemolymph samples of 100% of weak lobsters. Histopathology revealed the presence of Gram-negative bacteria throughout the tissues with evidence of antemortem edema and necrosis suggestive of septicemia. On the basis of these findings, we recommend to the lobster industry that if a reduction in depth and hauling rate is not economically feasible, fishermen should take particular care in handling lobsters and provide them with a recovery period in recirculating seawater prior to land transport. The ecological role of P. indicum is not fully defined at this time. However, it may be an emerging opportunistic pathogen of stressed lobsters. Judicious preemptive antibiotic therapy may be necessary to reduce mortality in susceptible lobsters destined for high-density holding facilities.