999 resultados para crowd dynamics
Resumo:
The social processes that lead to destructive behavior in celebratory crowds can be studied through an agent-based computer simulation. Riots are an increasingly common outcome of sports celebrations, and pose the potential for harm to participants, bystanders, property, and the reputation of the groups with whom participants are associated. Rioting cannot necessarily be attributed to the negative emotions of individuals, such as anger, rage, frustration and despair. For instance, the celebratory behavior (e.g., chanting, cheering, singing) during UConn’s “Spring Weekend” and after the 2004 NCAA Championships resulted in several small fires and overturned cars. Further, not every individual in the area of a riot engages in violence, and those who do, do not do so continuously. Instead, small groups carry out the majority of violent acts in relatively short-lived episodes. Agent-based computer simulations are an ideal method for modeling complex group-level social phenomena, such as celebratory gatherings and riots, which emerge from the interaction of relatively “simple” individuals. By making simple assumptions about individuals’ decision-making and behaviors and allowing actors to affect one another, behavioral patterns emerge that cannot be predicted by the characteristics of individuals. The computer simulation developed here models celebratory riot behavior by repeatedly evaluating a single algorithm for each individual, the inputs of which are affected by the characteristics of nearby actors. Specifically, the simulation assumes that (a) actors possess 1 of 5 distinct social identities (group memberships), (b) actors will congregate with actors who possess the same identity, (c) the degree of social cohesion generated in the social context determines the stability of relationships within groups, and (d) actors’ level of aggression is affected by the aggression of other group members. Not only does this simulation provide a systematic investigation of the effects of the initial distribution of aggression, social identification, and cohesiveness on riot outcomes, but also an analytic tool others may use to investigate, visualize and predict how various individual characteristics affect emergent crowd behavior.
Resumo:
Walking is the most basic form of transportation. A good understanding of pedestrian’s dynamics is essential in meeting the mobility and accessibility needs of people by providing a safe and quick walking flow. Advances in the dynamics of pedestrians in crowds are of great theoretical and practical interest, as they lead to new insights regarding the planning of pedestrian facilities, crowd management, or evacuation analysis. As a physicist, I would like to put forward some additional theoretical and practical contributions that could be interesting to explore, regarding the perspective of physics on about human crowd dynamics (panic as a specific form of behavior excluded).
Resumo:
Vibration serviceability is a widely recognized design criterion for assembly-type structures, such as stadiums, that are likely subjected to rhythmic human-induced excitation. Human-induced excitation of a structure occurs from the movement of the occupants such as walking, running, jumping, or dancing. Vibration serviceability is based on the level of comfort that people have with the vibrations of a structure. Current design guidance uses the natural frequency of the structure to assess vibration serviceability. However, a phenomenon known as human-structure interaction suggests that there is a dynamic interaction between the structure and passive occupants, altering the natural frequency of the system. Human-structure interaction is dependent on many factors, including the dynamic properties of the structure, posture of the occupants, and relative size of the crowd. It is unknown if the shift in natural frequency due to humanstructure interaction is significant enough to warrant consideration in the design process. This study explores the interface of both structural and crowd characteristics through experimental testing to determine if human-structure interaction should be considered because of its potential impact on serviceability assessment. An experimental test structure that represents the dynamic properties of a cantilevered stadium structure was designed and constructed. Experimental modal analysis was implemented to determine the dynamic properties of the empty test structure and when occupied with up to seven people arranged in different locations and postures. Comparisons of the dynamic properties were made between the empty and occupied testing configurations and analytical results from the use of a dynamic crowd model recommended from the Joint Working Group of Europe. Data trends lead to the development of a refined dynamic crowd model. This dynamic model can be used in conjunction with a finite element model of the test structure to estimate the dynamic influence due to human-structure interaction due to occupants standing with straight knees. In the future, the crowd model will be refined and can aid in assessing the dynamic properties of in-service stadium structures.
Resumo:
This paper firstly presents the benefits and critical challenges on the use of Bluetooth and Wi-Fi for crowd data collection and monitoring. The major challenges include antenna characteristics, environment’s complexity and scanning features. Wi-Fi and Bluetooth are compared in this paper in terms of architecture, discovery time, popularity of use and signal strength. Type of antennas used and the environment’s complexity such as trees for outdoor and partitions for indoor spaces highly affect the scanning range. The aforementioned challenges are empirically evaluated by “real” experiments using Bluetooth and Wi-Fi Scanners. The issues related to the antenna characteristics are also highlighted by experimenting with different antenna types. Novel scanning approaches including Overlapped Zones and Single Point Multi-Range detection methods will be then presented and verified by real-world tests. These novel techniques will be applied for location identification of the MAC IDs captured that can extract more information about people movement dynamics.
Resumo:
This thesis was a step forward in extracting valuable features from human's movement behaviour in terms of space utilisation based on Media-Access-Control data. This research offered a low-cost and less computational complexity approach compared to existing human's movement tracking methods. This research was successfully applied in QUT's Gardens Point campus and can be scaled to bigger environments and societies. Extractable information from human's movement by this approach can add a significant value to studying human's movement behaviour, enhancing future urban and interior design, improving crowd safety and evacuation plans.
Resumo:
Observations conducted by researchers revealed that the group interaction within crowds is a common phenomenon and has great influence on pedestrian behaviour. However, most research currently undertaken by various researchers failed to consider the group dynamics when developing pedestrian flow models. This paper presented a critical review of pedestrian models that incorporates group behaviour. Models reviewed in this paper are mainly created by microscopic modelling approaches such as social force, cellular automata, and agent-based method. The purpose of this literature review is to improve the understanding of group dynamics among pedestrians and highlight the need for considering group dynamics when developing pedestrian simulation models.
Resumo:
Title: The perception of critical situations involving football fans – how conflicts escalate or de-escalate Authors: Brechbühl, A.1, Schumacher, A.1 & Seiler, R.1 1Institute of Sport Science, University of Bern, Switzerland Abstract: Introduction: Fan violence in the context of football matches is a prominent issue in today’s western societies and Switzerland presents no exception. A lot of research has been conducted on reasons for fan violence, mostly with fans of national teams. A prominent model is the Elaborated Social Identity Model (ESIM; Drury & Reicher, 2000): ESIM highlights the importance of interactions between the involved groups and their effect on the development of social identities. Another model is the aggravation mitigation model (AM model; Hylander & Guvå, 2010) which illustrates factors that can contribute towards an escalation or non-escalation of group violence, such as the “categorization” of the opponent group. Despite these models, research about the individual perceptions, and in particular, what factors distinguish between an escalation versus a non-escalation of a potentially violent situation in domestic football, is as yet scarce. This explorative study examines perceptions of critical situations in the domestic football fan context in Switzerland. Methods: An explorative qualitative design was employed to gather data about critical situations (CS) around football matches of two clubs of the Raiffeisen Super League. A CS is defined as a setting in or around the football stadium where violence between football fans and another group could occur. Eight CS were identified and analysed. Fifty-nine narrative interviews with individuals involved in a CS, e.g. fans, police officers or security personnel, were conducted. Interviews were analysed using interpretative phenomenological analysis (IPA). Results: The involved opposing groups expressed group-specific perceptions. Furthermore a strong tendency to negatively stereotype the opponent group was observed. Provocative symbols, such as balaclavas or riot-gear uniforms, were considered as highly relevant for the interpretation of the situation. Successful communication and sufficient distance between opponent groups supported the appeasement of a CS. These findings also underline the importance of knowledge about the local fan culture. This culture serves as basis for the perception of legitimacy, which was assessed to be essential for a de-escalation of a CS by fans. Discussion/Conclusion: This study improves the understanding of fan violence in the domestic football context in Switzerland. Based on the results it is suggested to deploy security or police forces without riot gear but with the goal of seeking dialogue with the fans to increase the likelihood of a peaceful ending in a CS. The findings also support the applicability of the ESIM (Drury & Reicher, 2000) and the AM model (Hylander & Guvå, 2010) in the context of domestic fan violence. Due to possible differences in the local fan cultures in Switzerland, research in this area should be continued. References: Drury, J., & Reicher, S. (2000). Collective action and psychological change: The emergence of new social identities. British Journal of Social Psychology, 39, 579-604. Hylander, I., & Guvå, G. (2010). Misunderstanding of out-group behaviour: Different interpretations of the same crowd events among police officers and demonstrators. Nordic Psychology, 62, 25-47.