921 resultados para cross-language information retrieval


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Users seeking information may not find relevant information pertaining to their information need in a specific language. But information may be available in a language different from their own, but users may not know that language. Thus users may experience difficulty in accessing the information present in different languages. Since the retrieval process depends on the translation of the user query, there are many issues in getting the right translation of the user query. For a pair of languages chosen by a user, resources, like incomplete dictionary, inaccurate machine translation system may exist. These resources may be insufficient to map the query terms in one language to its equivalent terms in another language. Also for a given query, there might exist multiple correct translations. The underlying corpus evidence may suggest a clue to select a probable set of translations that could eventually perform a better information retrieval. In this paper, we present a cross language information retrieval approach to effectively retrieve information present in a language other than the language of the user query using the corpus driven query suggestion approach. The idea is to utilize the corpus based evidence of one language to improve the retrieval and re-ranking of news documents in the other language. We use FIRE corpora - Tamil and English news collections in our experiments and illustrate the effectiveness of the proposed cross language information retrieval approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes about an English-Malayalam Cross-Lingual Information Retrieval system. The system retrieves Malayalam documents in response to query given in English or Malayalam. Thus monolingual information retrieval is also supported in this system. Malayalam is one of the most prominent regional languages of Indian subcontinent. It is spoken by more than 37 million people and is the native language of Kerala state in India. Since we neither had any full-fledged online bilingual dictionary nor any parallel corpora to build the statistical lexicon, we used a bilingual dictionary developed in house for translation. Other language specific resources like Malayalam stemmer, Malayalam morphological root analyzer etc developed in house were used in this work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Summary : Fuzzy translation techniques in cross-language information retrieval between closely related languages

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Depuis quelques années, Internet est devenu un média incontournable pour la diffusion de ressources multilingues. Cependant, les différences linguistiques constituent souvent un obstacle majeur aux échanges de documents scientifiques, culturels, pédagogiques et commerciaux. En plus de cette diversité linguistique, on constate le développement croissant de bases de données et de collections composées de différents types de documents textuels ou multimédias, ce qui complexifie également le processus de repérage documentaire. En général, on considère l’image comme « libre » au point de vue linguistique. Toutefois, l’indexation en vocabulaire contrôlé ou libre (non contrôlé) confère à l’image un statut linguistique au même titre que tout document textuel, ce qui peut avoir une incidence sur le repérage. Le but de notre recherche est de vérifier l’existence de différences entre les caractéristiques de deux approches d’indexation pour les images ordinaires représentant des objets de la vie quotidienne, en vocabulaire contrôlé et en vocabulaire libre, et entre les résultats obtenus au moment de leur repérage. Cette étude suppose que les deux approches d’indexation présentent des caractéristiques communes, mais également des différences pouvant influencer le repérage de l’image. Cette recherche permet de vérifier si l’une ou l’autre de ces approches d’indexation surclasse l’autre, en termes d’efficacité, d’efficience et de satisfaction du chercheur d’images, en contexte de repérage multilingue. Afin d’atteindre le but fixé par cette recherche, deux objectifs spécifiques sont définis : identifier les caractéristiques de chacune des deux approches d’indexation de l’image ordinaire représentant des objets de la vie quotidienne pouvant influencer le repérage, en contexte multilingue et exposer les différences sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images à repérer des images ordinaires représentant des objets de la vie quotidienne indexées à l’aide d’approches offrant des caractéristiques variées, en contexte multilingue. Trois modes de collecte des données sont employés : l’analyse des termes utilisés pour l’indexation des images, la simulation du repérage d’un ensemble d’images indexées selon chacune des formes d’indexation à l’étude réalisée auprès de soixante répondants, et le questionnaire administré aux participants pendant et après la simulation du repérage. Quatre mesures sont définies pour cette recherche : l’efficacité du repérage d’images, mesurée par le taux de succès du repérage calculé à l’aide du nombre d’images repérées; l’efficience temporelle, mesurée par le temps, en secondes, utilisé par image repérée; l’efficience humaine, mesurée par l’effort humain, en nombre de requêtes formulées par image repérée et la satisfaction du chercheur d’images, mesurée par son autoévaluation suite à chaque tâche de repérage effectuée. Cette recherche montre que sur le plan de l’indexation de l’image ordinaire représentant des objets de la vie quotidienne, les approches d’indexation étudiées diffèrent fondamentalement l’une de l’autre, sur le plan terminologique, perceptuel et structurel. En outre, l’analyse des caractéristiques des deux approches d’indexation révèle que si la langue d’indexation est modifiée, les caractéristiques varient peu au sein d’une même approche d’indexation. Finalement, cette recherche souligne que les deux approches d’indexation à l’étude offrent une performance de repérage des images ordinaires représentant des objets de la vie quotidienne différente sur le plan de l’efficacité, de l’efficience et de la satisfaction du chercheur d’images, selon l’approche et la langue utilisées pour l’indexation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Les moteurs de recherche font partie de notre vie quotidienne. Actuellement, plus d’un tiers de la population mondiale utilise l’Internet. Les moteurs de recherche leur permettent de trouver rapidement les informations ou les produits qu'ils veulent. La recherche d'information (IR) est le fondement de moteurs de recherche modernes. Les approches traditionnelles de recherche d'information supposent que les termes d'indexation sont indépendants. Pourtant, les termes qui apparaissent dans le même contexte sont souvent dépendants. L’absence de la prise en compte de ces dépendances est une des causes de l’introduction de bruit dans le résultat (résultat non pertinents). Certaines études ont proposé d’intégrer certains types de dépendance, tels que la proximité, la cooccurrence, la contiguïté et de la dépendance grammaticale. Dans la plupart des cas, les modèles de dépendance sont construits séparément et ensuite combinés avec le modèle traditionnel de mots avec une importance constante. Par conséquent, ils ne peuvent pas capturer correctement la dépendance variable et la force de dépendance. Par exemple, la dépendance entre les mots adjacents "Black Friday" est plus importante que celle entre les mots "road constructions". Dans cette thèse, nous étudions différentes approches pour capturer les relations des termes et de leurs forces de dépendance. Nous avons proposé des méthodes suivantes: ─ Nous réexaminons l'approche de combinaison en utilisant différentes unités d'indexation pour la RI monolingue en chinois et la RI translinguistique entre anglais et chinois. En plus d’utiliser des mots, nous étudions la possibilité d'utiliser bi-gramme et uni-gramme comme unité de traduction pour le chinois. Plusieurs modèles de traduction sont construits pour traduire des mots anglais en uni-grammes, bi-grammes et mots chinois avec un corpus parallèle. Une requête en anglais est ensuite traduite de plusieurs façons, et un score classement est produit avec chaque traduction. Le score final de classement combine tous ces types de traduction. Nous considérons la dépendance entre les termes en utilisant la théorie d’évidence de Dempster-Shafer. Une occurrence d'un fragment de texte (de plusieurs mots) dans un document est considérée comme représentant l'ensemble de tous les termes constituants. La probabilité est assignée à un tel ensemble de termes plutôt qu’a chaque terme individuel. Au moment d’évaluation de requête, cette probabilité est redistribuée aux termes de la requête si ces derniers sont différents. Cette approche nous permet d'intégrer les relations de dépendance entre les termes. Nous proposons un modèle discriminant pour intégrer les différentes types de dépendance selon leur force et leur utilité pour la RI. Notamment, nous considérons la dépendance de contiguïté et de cooccurrence à de différentes distances, c’est-à-dire les bi-grammes et les paires de termes dans une fenêtre de 2, 4, 8 et 16 mots. Le poids d’un bi-gramme ou d’une paire de termes dépendants est déterminé selon un ensemble des caractères, en utilisant la régression SVM. Toutes les méthodes proposées sont évaluées sur plusieurs collections en anglais et/ou chinois, et les résultats expérimentaux montrent que ces méthodes produisent des améliorations substantielles sur l'état de l'art.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the first set of experiments defined by the MIRACLE (Multilingual Information RetrievAl for the CLEf campaign) research group for some of the cross language tasks defined by CLEF. These experiments combine different basic techniques, linguistic-oriented and statistic-oriented, to be applied to the indexing and retrieval processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore the use of semantic classes in an existing information retrieval system in order to improve its results. Thus, we use two different ontologies of semantic classes (WordNet domain and Basic Level Concepts) in order to re-rank the retrieved documents and obtain better recall and precision. Finally, we implement a new method for weighting the expanded terms taking into account the weights of the original query terms and their relations in WordNet with respect to the new ones (which have demonstrated to improve the results). The evaluation of these approaches was carried out in the CLEF Robust-WSD Task, obtaining an improvement of 1.8% in GMAP for the semantic classes approach and 10% in MAP employing the WordNet term weighting approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

International audience

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most of the existing open-source search engines, utilize keyword or tf-idf based techniques to find relevant documents and web pages relative to an input query. Although these methods, with the help of a page rank or knowledge graphs, proved to be effective in some cases, they often fail to retrieve relevant instances for more complicated queries that would require a semantic understanding to be exploited. In this Thesis, a self-supervised information retrieval system based on transformers is employed to build a semantic search engine over the library of Gruppo Maggioli company. Semantic search or search with meaning can refer to an understanding of the query, instead of simply finding words matches and, in general, it represents knowledge in a way suitable for retrieval. We chose to investigate a new self-supervised strategy to handle the training of unlabeled data based on the creation of pairs of ’artificial’ queries and the respective positive passages. We claim that by removing the reliance on labeled data, we may use the large volume of unlabeled material on the web without being limited to languages or domains where labeled data is abundant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal