962 resultados para crop water use


Relevância:

100.00% 100.00%

Publicador:

Resumo:

All crop models, whether site-specific or global-gridded and regardless of crop, simulate daily crop transpiration and soil evaporation during the crop life cycle, resulting in seasonal crop water use. Modelers use several methods for predicting daily potential evapotranspiration (ET), including FAO-56, Penman-Monteith, Priestley-Taylor, Hargreaves, full energy balance, and transpiration water efficiency. They use extinction equations to partition energy to soil evaporation or transpiration, depending on leaf area index. Most models simulate soil water balance and soil-root water supply for transpiration, and limit transpiration if water uptake is insufficient, and thereafter reduce dry matter production. Comparisons among multiple crop and global gridded models in the Agricultural Model Intercomparison and Improvement Project (AgMIP) show surprisingly large differences in simulated ET and crop water use for the same climatic conditions. Model intercomparisons alone are not enough to know which approaches are correct. There is an urgent need to test these models against field-observed data on ET and crop water use. It is important to test various ET modules/equations in a model platform where other aspects such as soil water balance and rooting are held constant, to avoid compensation caused by other parts of models. The CSM-CROPGRO model in DSSAT already has ET equations for Priestley-Taylor, Penman-FAO-24, Penman-Monteith-FAO-56, and an hourly energy balance approach. In this work, we added transpiration-efficiency modules to DSSAT and AgMaize models and tested the various ET equations against available data on ET, soil water balance, and season-long crop water use of soybean, fababean, maize, and other crops where runoff and deep percolation were known or zero. The different ET modules created considerable differences in predicted ET, growth, and yield.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Light and water are among essential resources required for production of photosynthates in plants. A study on the effects of weeding regimes and maize planting density on light and water use was conducted during the 2001/2 short and 2002 long rain seasons at Muguga in - the central highlands of Kenya. Weeding regimes were: weed free (W1), weedy (W2), herbicide (W3) and hand weeding twice (W4). Maize planting densities were 9 (D1) and 18 plants m-2 (D2) intercropped with Phaseolus vulgaris (beans). The experiment was laid as randomized complete block design replicated four times and repeated twice. All plots were thinned to 4 plants m-2 at tasseling stage (96 DAE) and thinnings quantified as forage. Soil moisture content (SMC), photosynthetically active radiation (PAR) interception, evapo-transpiration (ET crop), water use efficiency (WUE), and harvest index (HI), were determined. Percent PAR was higher in D2 than in D1 before thinning but higher in D1 than in D2 after thinning in both seasons. PAR interception was highest in W2 but similar in W1, W3 and W4 in both seasons. SMC was significantly lower in W2 but similar in W1, W3 and W4. D2 had lower SMC than D1 in season two. Weeding regime significantly influenced ET crop, while planting density and weeding regime significantly influenced WUE and HI. D2 maximizes water and light use for forage production but results to increased intra-specific plant competition for water and light severely before thinning (96 DAE) that reduce grain yield in dual purpose maize, relative to D1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop production has a great contribution to water use and abstraction. Sugar beet is an important crop in irrigated land in Spain and covers 70.000 Ha. Crop and resources management are key factors for a sustainable agriculture. The aim of this work is to mode the sugar beet crop growth and water consumption in order to quantify crop water use and virtual water content in different growing conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water use and crop coefficient for hybrid DKB 390. This work aims to characterize the water use of maize hybrid DKB 390 under suitable conditions of irrigation for both sufficient and below-optimal situations of nitrogen supply. Crop coefficient values for different stages are also presented as a result, in order to provide the basis for crop water budget and management throughout the cycle. A field experiment was carried Out during the main season, in which biomass, soil moisture, leaf area, climate data and light transmittance were evaluated. These have allowed deriving water balance, use and efficiency. The mentioned genotype requires around 600 nun for high yield targets, being less efficient when led under below-optimal nitrogen fertilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Olive tree sap flow measurements were collected in an intensive orchard near Évora, Portugal, during the irrigation seasons of 2013 and 2014, to calculate daily tree transpiration rates (T_SF). Meteorological variables were also collected to calculate reference evapotranspiration (ETo). Both data were used to assess values of basal crop coefficient (Kcb) for the period of the sap flow observations. The soil water balance model SIMDualKc was calibrated with soil, biophysical ground data and sap flow measurements collected in 2013. Validated in 2014 with collected sap flow observations, the model was used to provide estimates of dual e single crop coefficients for 2014 crop growing season. Good agreement between model simulated daily transpiration rates and those obtained with sapflow measurements was observed for 2014 (R2=0.76, RMSE=0.20 mm d-1), the year of validation, with an estimation average absolute error (AAE) of 0.20 mm d-1. Olive modeled daily actual evapotranspiration resulted in atual ETc values of 0.87, 2.05 and 0.77 mm d-1 for 2014 initial, mid- and end-season, respectively. Actual crop coefficient (Kc act) values of 0.51, 0.43 and 0.67 were also obtained for the same periods, respectively. Higher Kc values during spring (initial stage) and autumn (end-stage) were published in FAO56, varying between 0.65 for Kc ini and 0.70 for Kc end. The lower Kc mid value of 0.43 obtained for the summer (mid-season) is also inconsistent with the FAO56 expected Kc mid value of 0.70 for the period. The modeled Kc results are more consistent with the ones published by Allen & Pereira [1] for olive orchards with effective ground cover of 0.25 to 0.5, which vary between 0.40 and 0.80 for Kc ini, 0.40–0.60 for Kc mid with no active ground cover, and 0.35–0.75 for Kc end, depending on ground cover. The SIMDualKc simulation model proved to be appropriate for obtaining evapotranspiration and crop coefficient values for our intensive olive orchard in southern Portugal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biophysical and meteorological variables as well as radiometric canopy temperatures were collected in an intensive orchard near Évora, Portugal, with 28% ground cover by canopy and combined in a simplified two-source energy balance model (STSEB) to independently calculate the olive tree transpiration (T_STSEB) component of the total evapotranspiration (ETc). Sap flow observations were simultaneously taken in the same orchard allowing also for independent calculations of tree transpiration (T_SF). Model water use results were compared with water use estimates from the sap flow measurements. Good agreement was observed (R2=0.86, RMSE=0.20 mm d-1), with an estimation average absolute error (AAE) of 0.17 mm d-1. From June to August, on average olive water use were 1.92 and 1.89 mm d-1 for sap flow and STSEB model respectively, and 1.38 and 1.58 mm d-1 for the month of September. Results were also used to assess the olive basal crop coefficients (Kcb). Kcb estimates of 0.33 were obtained for sap flow and STSEB model, respectively, for June to August, and of 0.44 and 0.53 for the month of September. Basal crop coefficients were lower than the suggested FAO56 average Kcb values of 0.65 for June to August, the crop mid-season growth stage, and of 0.65 for the month of September, the end-season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the aim to study the water efficiency on the muskmelon hydroponics during a long cycle of crop and with different intervals between irrigation was carried out an experiment in two season from October 2003 to January 2004 (season I) and from January to April (season II). The experiment was carried out on the Fitotecnia Department on the Universidade Federal of Santa Maria, Santa Maria, RS. Were determined the water consumptions on the growth of the plants to observe the water efficiency. The water efficiency was a maximum on the blossom phase (4.19g de FS m(-3)) on the season I and on the vegetative phase (8.22g de FS m(-3)) for season II, associated with an elevated growth rate and small water consumptions on these seasons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The use of productivity information and efficiency of water use is important for the economic analysis of production and irrigation management, and also helps the economy of water use, which is essential to plant life. The objective of this study was to evaluate the biomass allocation, the water use efficiency and water content in fruits of sweet pepper cropped under the influence of irrigation blades and potassium doses. The statistic design was a completely randomized factorial scheme (5 x 2) and four replications, with five irrigation blades (80; 90; 100; 110 and 120% of crop evapotranspiration) and two levels of potassium (80 and 120 kg K2O ha-1 ), applied according to phenological phase, through a system of drip irrigation with self-compensated drippers, installed in a battery of 40 drainage lysimeters cultivated with sweet pepper (Maximos F1), at Federal Rural University of Pernambuco (UFRPE), Recife, state of Pernambuco, Brazil. The dry biomass production of sweet pepper was influenced by fertigation regimes; when it was set the lowest dose, estimates of the efficiency of water use and moisture in the fruit occurred with the use of irrigation depth of 97 and 95% of ETc, respectively.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models are important tools to assess the scope of management effects on crop productivity under different climatic and soil regimes. Accordingly, this study developed and used a simple model to assess the effects of nitrogen fertiliser and planting density on the water use efficiency (q) of maize in semi-arid Kenya. Field experiments were undertaken at Sonning, Berkshire, UK, in 1996 (one sowing) and 1997 (two sowings). The results from the field experiments plus soil and weather data for Machakos, Kenya (1 degree 33'S, 37 degree 14'E and 1560 m above sea level), were then used to predict the effects that N application and planting density may have on water use by a maize crop grown in semi-arid Kenya. The increase in q due to N application was greater under irrigated (15%-19%) than rainfed (7%-8%) conditions. Also, high planting density increased q (by 13%) under irrigation but decreased q (by 17%) under rainfed conditions. The current study has shown the significance of crop modelling techniques in assessing the influence of N and planting density on maize production in one region of semi-arid Kenya where there is high variability of rainfall.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The herbicides glyphosate and paraquat have been used by Brazilian soybean producers to obtain crop desiccation and to anticipate and uniformity at harvest. However, improper use of herbicides can to occasion problems in agronomic and physiologic characteristics of crop. This study aimed to evaluate the use of the glyphosate and paraquat herbicides as a desiccant for growing soybeans. The experiment was conducted in 2005/06 crop year, in an experimental design of randomized blocks with four replications. Treatments were arranged in two factorial design, 3x3x5x2 and 3x2x5x2: two desiccants (glyphosate and paraquat) and control (without drying), three and two growth stages (R6, R7 and R8) and (R7 and R8) for varieties MSOY 6101 of superprecocious cycle, and MG / BR 46 (Conquista) of precocious cycle, respectively, five sampling times (2, 4, 6, 8 and 10 days after application) and two positions in the plants on the ground assessment (apex and base). Was evaluated for seed Production, mass and water content of 100 seeds. Desiccants tested were effective in reducing the water content of seeds, without affecting productivity and mass of 100 seeds.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crop water requirements are important elements for food production, especially in arid and semiarid regions. These regions are experience increasing population growth and less water for agriculture, which amplifies the need for more efficient irrigation. Improved water use efficiency is needed to produce more food while conserving water as a limited natural resource. Evaporation (E) from bare soil and Transpiration (T) from plants is considered a critical part of the global water cycle and, in recent decades, climate change could lead to increased E and T. Because energy is required to break hydrogen bonds and vaporize water, water and energy balances are closely connected. The soil water balance is also linked with water vapour losses to evapotranspiration (ET) that are dependent mainly on energy balance at the Earth’s surface. This work addresses the role of evapotranspiration for water use efficiency by developing a mathematical model that improves the accuracy of crop evapotranspiration calculation; accounting for the effects of weather conditions, e.g., wind speed and humidity, on crop coefficients, which relates crop evapotranspiration to reference evapotranspiration. The ability to partition ET into Evaporation and Transpiration components will help irrigation managers to find ways to improve water use efficiency by decreasing the ratio of evaporation to transpiration. The developed crop coefficient model will improve both irrigation scheduling and water resources planning in response to future climate change, which can improve world food production and water use efficiency in agriculture.