918 resultados para crofton- weed gall fly (Procecidochares utilis)
Resumo:
紫茎泽兰(Eupatorium adenophorum)是臭名昭著的世界恶性杂草之一,目前全世界已有30多个国家和地区遭受到它的入侵危害,因此引起了全社会各方面广泛的关注。我国西南部是紫茎泽兰入侵并造成严重危害的地区之一,本文以四川省攀西地区紫茎泽兰入侵危害严重的生态系统为研究对象,分别对不同生境条件下各年龄紫茎泽兰的生长状况、幼苗生长动态、不同类型群落中紫茎泽兰的种群变化规律以及泽兰实蝇防治紫茎泽兰现状进行研究,分析紫茎泽兰生态学特征及入侵策略,以揭示紫茎泽兰的入侵机制。 不同生境条件下相同年龄紫茎泽兰其生长状况有很大的不同:当年生紫茎泽兰幼苗在偏阴和灌丛遮荫环境下生长状况优于偏阳生境下,一年生以上的成熟植株生长情况则相反;紫茎泽兰在其单优群落中的生长状况明显优于灌丛中伴生的紫茎泽兰,说明一定程度的遮荫、植被覆盖及竞争对紫茎泽兰生长有一定的抑制作用。不同种类的灌木对紫茎泽兰生长的影响亦有所不同,其中,马桑(Coriaria sinica)等冠幅较大、性喜阴湿的落叶类灌木对紫茎泽兰幼苗萌发、种群更新有庇护和促进作用,而其他类冠幅小、常绿或落叶、且生于干旱生境下的灌木,则不利于紫茎泽兰幼苗萌发及种群更新,有些甚至会产生化感物种抑制紫茎泽兰的生长。 紫茎泽兰种子萌发属投机式萌发,一年内只要有适合的温湿条件都可以萌发。种子萌发的高峰期主要集中在雨季,冬春干旱季节萌发率很低。紫茎泽兰为常绿半灌木,终年可持续生长,生长速率受光照、湿度和温度影响显著。秋季萌发的紫茎泽兰幼苗在越冬及干旱季节中,各项生长指标(包括主茎长度、总叶面积、基径等)增长缓慢,一年之内平均月增长量由高到低的顺序分别为:偏阳生境>全荫湿润生境>灌丛遮荫生境,生长旺期为雨季约6 ~10月份;秋季萌发越年生实生苗生长节律与当年生实生苗相似,但生长周期不同于雨季萌发苗,需经过两个冬季才能开花结实完成其生活史;紫茎泽兰生活史循环过程,通过有性生殖与无性生殖相互补的繁殖策略进行种群的更新与扩散,进而达到入侵的目的。 泽兰实蝇(Procecidochares utilis)作为天敌控制紫茎泽兰已经在国内外得到广泛的应用,但关于它对紫茎泽兰控制的有效性和防治现状的研究尚不深入。本文通过对攀西地区紫茎泽兰入侵危害严重的路域生态系统中泽兰实蝇寄生状况的抽样调查,初步研究了泽兰实蝇对紫茎泽兰生长,特别是生殖能力的影响。研究结果表明:1)植株寄生率与枝条寄生率有显著差异(p﹤0.05),分别为71.67% 和17.30%,前者显著高于后者;样方调查结果显示,成熟群落中枝条寄生率为17.48枝•m-2;1虫瘿•枝条-1的枝条占所有寄生枝条的92.30%;2)湿润生境下紫茎泽兰的枝条寄生率为20.27%,显著高于干旱生境下的枝条寄生率(9.33%)(p﹤0.05);3)不同年龄植株枝条寄生率有差异,0 ~1年生植株枝条寄生率分别为36.36%和21.56%,显著高于2 ~4年生的植株枝条寄生率,后者分别为13.50%,8.82%及12.16%(p﹤0.05);4)在目前的寄生强度下,泽兰实蝇对紫茎泽兰枝条的直径、花枝量、头状花序数及结实量均无显著影响(p﹥0.05)。因此可以推断,目前单一的引进泽兰实蝇进行天敌控制不能达到预期的防治目标,天敌的引入也应慎重考虑。 紫茎泽兰能够利用与当地大多数植物种类生长节律的时间差异,通过首先占领时间生态位而达到占据空间生态位,最终导致严重的入侵危害。在不同类型的群落中,紫茎泽兰种群利用不同的适应策略进行入侵。自然和人工播种样地中,紫茎泽兰种群与群落状况的变化规律均呈相反趋势。对于一个成熟的紫茎泽兰种群,一旦其定居后即能很好的利用时间和空间生态位的空缺的来促进其优势地位的增强和巩固,从而逐渐增加其入侵程度,造成越来越大的灾害;而对于一个郁蔽度较好且较完整的群落,紫茎泽兰通过幼苗进行扩张以达到入侵的途径通常比较困难,只有在发生人为活动干扰时,才有可能通过投机式繁殖方式进入群落内部定居,继而通过克隆生殖的方式进行入侵。
Resumo:
Host specificity tests on Gynaikothrips ficorum (Marchal) and Gynaikothrips uzeli (Zimmerman) (Thysanoptera: Phlaeothripidae) have shown that under experimental conditions, G. ficorum will induce leaf galls on both Ficus benjamina L. and Ficus microcarpa L. f. (Rosales: Moraceae), but G. uzeli will induce galls only on F. benjamina. A further interesting aspect of the results is that gall induction by G. uzeli on F. benjamina appears to have been suppressed in the presence of F. microcarpa plants in the same cage. Liothrips takahashii (Moulton) (Thysanoptera: Phlaeothripidae), an inquiline in the galls of these Gynaikothrips, is reported for the first time from Australia, mainland China, Malaysia, Costa Rica, and western USA.
Resumo:
The gall fly Cecidochares connexa (Diptera: Tephritidae) is a potential biological control agent for Chromolaena odorata in Australia. Its host specificity was determined against 18 species in the tribe Eupatorieae (Family Asteraceae) in which C. odorata belongs, in quarantine in Brisbane, Australia. Oviposition occurred and flies developed on only C. odorata and Praxelis clematidea, both of which are in the subtribe Praxelinae. P. clematidea is considered a weed outside tropical America. In both multiple-species-minus-C. odorata choice tests and single-species no-choice tests, the mean number of galls/plant was significantly greater on C. odorata (48 and 41, respectively) than on P. clematidea (2 and 9, respectively). There were also significantly more adults emerging from C. odorata (mean 129 and 169, respectively) in the two types of tests than from P. clematidea (1 and 8, respectively). Paired choice, multiple generation (continuation) and time dependent tests further clarified the extent that C. connexa could develop on P. clematidea. In these tests, the mean number of galls formed and the mean number of emerging adults were consistently less for P. clematidea than C. odorata and populations of C. connexa could not be maintained on P. clematidea. Galls were not seen on any other plant species tested. This study supports the results of host specificity testing conducted in seven other countries and confirms that C. connexa poses little risk to other plant species in Australia. C. connexa has been released in 10 countries and an application seeking approval to release in Australia has been submitted to the Australian Government.
Resumo:
The status of biocontrol of Chromolaena odorata, a weed of significant agricultural importance in Papua New Guinea, is assessed. Chromolaena is confirmed present in 391 sites in 12 of the 20 provinces of PNG. A collaborative project on the biocontrol of chromolaena involving the PNG National Agricultural Research Institute and the Queensland Department of Primary Industries and Fisheries began in1998, with funding from ACIAR. Three agents, the moth Pareuchaetes pseudoinsulata, which has established only in Morobe Province, the stem-galling fly Cecidochares connexa, which has established in all 12 provinces and the leaf mining fly Calycomyza eupatorivora, which is currently being monitored for establishment, have been introduced. Cecidochares connexa has been the most effective of the agents so far and it has spread more than 100 km in five years from some release sites. Preliminary field data have shown that the numbers of galls per plant have increased, coupled with a decrease in plant height and percent plant cover. In parts of New Ireland and Sandaun provinces, C. connexa has controlled chromolaena, resulting in the regeneration of natural vegetation. In addition, some food gardens have been re-established where chromolaena had once taken over. Consequently, food production has increased and income generated from selling agricultural produce has increased two fold. There is also less time spent in clearing chromolaena from food gardens and plantations. The effectiveness of C. connexa has brought relief to many communities, which are helping in the distribution of the gall fly to other areas affected by chromolaena.
Resumo:
Chromolaena odorata (L.) King and Robinson (Asteraceae) is a major weed in Timor Leste, affecting grazing lands and subsistence farms, reducing productivity and food security. It was the focus of a biocontrol project funded by the Australian Government from 2005-2009. During this period, the gall fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) was introduced from Papua New Guinea and Indonesia, where it is widespread. From these initial releases, the gall fly established at seven sites and was subsequently re-distributed to most areas in Timor Leste where chromolaena was a problem. It established at most of the release sites that were revisited and caused a visible reduction in plant density and height. Overall, control of chromolaena by the gall fly in Timor Leste is limited by the severe dry season and the widespread use of fire in clearing lands for agriculture, both of which reduce the ability of gall fly populations to persist at damaging levels. Thus additional agents that can tolerate prolonged dry periods are required to increase the level of control of chromolaena.
Resumo:
Chromolaena odorata (L.) King and Robinson (Asteraceae) is a significant agricultural weed in Papua New Guinea (PNG), affecting plantations, food gardens and grazing lands. It was the focus of a collaborative biocontrol program funded by the Australian Government between 1998 and 2007. Chromolaena was recorded at 680 sites in 13 provinces of PNG through surveys, field releases of biocontrol agents and feedback from public awareness programs. Three biocontrol agents, the moth Pareuchaetes pseudoinsulata Rego Barros (Lepidoptera: Arctiidae), the stemgalling fly Cecidochares connexa (Macquart) (Diptera: Tephritidae) and the leaf mining fly Calycomyza eupatorivora Spencer (Diptera: Agromyzidae), were introduced to control chromolaena. Cecidochares connexa was found to be the most effective of the agents introduced as it quickly established at over 300 sites where it was released and spread up to 100km in five years from some sites. Experimental field plots established to determine the impact of the agents on chromolaena, showed that the size of chromolaena infestations decreased with the presence of C. connexa. A survey was conducted to quantify the social and economic benefits of biocontrol of chromolaena to landholders. Chromolaena is considered to be under substantial/significant control in nine provinces in PNG, with about 50% of respondents stating that there is less than 50% of chromolaena remaining following the release of the gall fly. This has resulted in landholders spending less time clearing chromolaena and the re-establishment of small-scale subsistence farms and the regeneration of natural vegetation. Crop yield and income generated from the sale of agricultural produce have increased by at least 50% since chromolaena was brought under biocontrol. It is anticipated that the gall fly will continue to spread and control chromolaena in areas where it has not yet reached, thereby further reducing the impact of the weed in PNG.
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
1. Herbivorous insects often have close associations with specific host plants, and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate populations, facilitating ecological speciation. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. 2. The present study investigated the role of host-plant volatiles in host fidelity and oviposition preference of the gall-boring, inquiline beetle, Mordellistena convicta LeConte (Coleoptera: Mordellidae), using Y-tube olfactometers. Previous studies suggest that the gall-boring beetle is undergoing sequential host-associated divergence by utilising the resources that are created by the diverging populations of the gall fly, Eurosta solidaginis Fitch (Diptera: Tephritidae), which induces galls on the stems of goldenrods including Solidago altissima L. (Asteraceae) and Solidago gigantea Ait. 3. Our results show that M. convicta adults are attracted to galls on their natal host plant, avoid the alternate host galls, and do not respond to volatile emissions from their host-plant stems. 4. These findings suggest that the gall-boring beetles can orient to the volatile chemicals from host galls, and that beetles can use them to identify suitable sites for mating and/or oviposition. Host-associated mating and oviposition likely play a role in the sequential radiation of the gall-boring beetle.
Resumo:
Species diversity itself may cause additional species diversity. According to recent findings, some species modify their environment in such a way that they facilitate the creation of new niches for other species to evolve to fill. Given the vast speciesdiversity of insects, the occurrence of such sequential radiation of species is likely common among herbivorous insects and the species that depend on them, many of them being insects as well. Herbivorous insects often have close associations with specific host plants and their preferences for mating and ovipositing on a specific host-plant species can reproductively isolate host-specific populations, facilitating speciation. Previous research by our laboratory has established that there are two distinct populations of thegall fly, Eurosta solidaginis (Tephritidae), which attack different species of goldenrods, Solidago altissima (Asteraceae) and S. gigantea. The gall fly’s host-associated differentiation is facilitating the divergence and potential speciation of twosubpopulations of the gall-boring beetle Mordellistena convicta (Mordellidae) by providing new resources (galls on stems of the galdenrods) for the gall-boring beetles. These beetles exist as two host-plant associated populations of inquilines that inhabit the galls induced by the gall fly. While our previous research has provided genetic and behavioral evidence for host-race formation, little is known about the role of their host plants in assortative mating and oviposition-site selection of the gall-boring beetles’ hostassociated populations. Volatile emissions from host plants can play a major role in assisting herbivores to locate their natal host plants and thus facilitate assortative mating and host-specific oviposition. The present study investigated the role of host-plant volatiles in host fidelity (mating on the host plant) and oviposition preference of M. convicta by measuring its behavioral responses to the host-plant volatile emissions using Y-tube olfactometers. In total, we tested behavioral responses of 615 beetles. Our resultsshow that M. convicta adults are attracted to their natal host galls (67% of S. altissima-emerging beetles and 70% of S. gigantea-emerging beetles) and avoid the alternate host galls (75% of S. altissima-emerging beetles and 66% of S. gigantea-emerging beetles),while showing no preference for, or avoidance of, ungalled plants from either species. This suggests that the gall beetles can orient to the volatile chemicals emitted by the galls and can potentially use them to identify suitable sites for mating and/or oviposition. Thus, host-associated mating and oviposition may play a role in the sequential speciation of the gall-boring beetle.
Resumo:
外来种紫茎泽兰 (Eupatorium adenophorum Spreng.) 对我国西南地区生态系统的危害已长达50~60年之久,我国于20世纪70年代开展紫茎泽兰的研究,但目前仍然没有能力将其限制在一个可控范围之内,随着我国对生物多样性重要性认识的加深,对于紫茎泽兰的研究也越来越深入。本文以四川攀枝花受入侵生态系统为例,通过对该地区植被、土壤种子库以及当地紫茎泽兰无性繁殖和种子萌发特征开展研究,分析受入侵生态系统的特征,结合紫茎泽兰种群补充特征,揭示紫茎泽兰入侵机制,探索管理受害生态系统的方法。 所选实验点为紫茎泽兰危害严重的地带,群落中紫茎泽兰为优势种,伴生种灌木18种,草本植物65种,草本层以紫茎泽兰最为昌盛,种群构成为1~4年生植株与其荫庇下大量的实生幼苗,Drude多度极大,频度达100%。紫茎泽兰与灌木重要值之间极显著负相关 (P<0.01) ,与其他草本重要值之间极显著负相关 (P<0.01) ,灌木与其他草本重要值间的相关性不显著 (P>0.05) 。说明紫茎泽兰的生长与灌木或草本间存在微妙的此消彼长的关联,充分显示了紫茎泽兰与当地物种间的竞争事实。 紫茎泽兰种子雨前的种子库为所研究地区绝大部分物种的长久性土壤种子库,本地区种子库的组成物种共有13种,包括灌木和草本。紫茎泽兰占整个种子库储量的61.3%,在长久种子库中占有明显的优势;种子库与植被间相似度为0.31,虽然种子库中物种均为植被的组成成分,但是植被中绝大多数物种种子未检测出,种子库中出现的物种与该物种本身的生理生态特性密切相关。种子雨是种子库的来源,紫茎泽兰种子雨前表层种子储量只占种子雨后的7.4%,中下层储量占33.8%,共占41.2%,即每年仅58.8%的种子在当年雨季萌发,剩余的在土壤中保持休眠状态。依 目前的研究结果,本地植被仅靠自然恢复的可能性不大。 紫茎泽兰种子最适发芽温度为25℃;储藏1.5 a后的种子萌发率有所下降,25℃下萌发率由77%下降为66%;紫茎泽兰种子有良好的休眠机制,对生境的干扰可以促进紫茎泽兰长久土壤种子库的形成,为紫茎泽兰种群补充奠定了基础。稀疏的植被有利于紫茎泽兰种子萌发及幼苗建植,对原生植被的破坏则促进了紫茎泽兰实生苗的补充。因而保护原始生境、减少对原生态系统的破坏,是减少和抑制紫茎泽兰种群补充的有效途径。 紫茎泽兰 (克隆) 离体无性繁殖的部位为根颈部分,其他离体部分没有无性繁殖能力或很弱;灌丛和路域生境下的离体部分在给予相同培养条件下,克隆繁殖效益有差别,灌丛生境萌芽较早,而主茎和叶生长速度较慢。拔除干扰对于紫茎泽兰萌生新枝具有刺激作用,对紫茎泽兰植株上部的割取类似于给它提供更新复壮的机会,因此在紫茎泽兰防治过程中一定要注意将其拔除干净,以防后患。
Resumo:
紫茎泽兰(Eupatorium adenophorum Spreng.)入侵我国已有70余年的时间,目前已经对我国西南地区造成了严重危害,却缺少有效的防治方法加以控制。本研究着眼于紫茎泽兰治理效果,在两片大面积综合防治样地的基础上,针对综合防治后样地紫茎泽兰再生长情况展开调查研究,并在野外观测的基础上设计两项置于样地附近的盆栽实验,研究紫茎泽兰在不同环境条件下的存活情况,以及与不同物种混播的种间竞争情况。 对综合治理1年后的样地中4个紫茎泽兰种群调查、分析结果表明,在不同的生境,采取不同的方法治理紫茎泽兰会导致紫茎泽兰采取不同的生长和繁殖对策进行再生长。紫茎泽兰生长速度为:水分充足的环境大于水分不充足的环境,萌生植株大于实生植株。种植替代物种绞股蓝(Gynostmma pentaphyllum)能够抑制紫茎泽兰的高生长,但在绞股蓝的压迫下紫茎泽兰长成L型,反而增加了冠幅、分蘖数目和单位株高的分枝数。在繁殖方式方面:采用拔除方法治理的区域紫茎泽兰以克隆繁殖为主,而采用喷洒化学除草剂治理的区域则以有性繁殖为主。 固定样方调查显示,紫茎泽兰再生长的1年当中,群落随季节变化而变。群落的盖度、密度和物种丰富度均随着旱季的深入而达到最低,第二年雨季到来后上升,紫茎泽兰在群落中处于绝对优势,尤其是在旱季优势更为明显。一年生紫茎泽兰在旱季部分植株死亡(死亡率为53.38±1.55%),少部分(5.66±0.45%)开花,产生种子的密度约为50 000ind∙m-2。与本地优势灌木物种车桑子(Dodonaea viscosa)、台湾相思(Acacia confuse)和马桑(Coriaria nepalensis)相比,紫茎泽兰具有更快的生长速度,更大的高度、密度和盖度。 紫茎泽兰种子的萌发需要充足的水分和遮荫条件。在盆栽实验当中,浇水或遮荫条件下足量紫茎泽兰的种子能够萌发更多的幼苗,而且幼苗的死亡率也比无浇水或无遮荫的处理低。在遮荫或去除其它物种竞争的条件下,紫茎泽兰幼苗生长速度更快。只要水分充足紫茎泽兰幼苗不会因拥挤而死亡,但是个体平均生物量会因拥挤而减小。 紫茎泽兰幼苗与本地3种草本植物比较结果,在未遮荫条件下,紫茎泽兰幼苗数量极少,且个体也非常小,而相同条件下荩草(Arthraxon hispidus)和含羞草决明(Cassia mimosoides)生长良好;在遮荫条件下荩草、含羞草决明和戟叶酸模(Rumex haxtatus )与紫茎泽兰相比则几乎没有优势。 成株紫茎泽兰生命力强,难以控制,幼苗时期是采用替代控制方法治理紫茎泽兰的最佳时期。在替代控制物种选择方面,可以在根除后播种本地灌木和草本植物,因为草本植物在早期可以抑制紫茎泽兰幼苗的萌发和生长,而同时播种的灌木种类则可以在植被恢复的后期起到控制紫茎泽兰再生长的重要作用。