319 resultados para cratonic lithosphere


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many Archean cratons are surrounded by Proterozoic mobile belts that have experienced episodes of tectonic re-activation over their lifetimes. This suggests that mobile belt lithosphere may be associated with long lived, inherited weakness. It is proposed that the proximity of this weakness can increase the longevity of deep Archean lithosphere by buffering Archean cratons from mantle derived stresses. The physical plausibility of this idea is explored through numerical simulations of mantle convection that include continents and allow for material rheologies that model the combined brittle and ductile behavior of the lithosphere. Within the simulations, the longevity of deep cratonic lithosphere does increase if it is buffered by mobile belts that can fail at relatively low stress levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

[1] The physical conditions required to provide for the tectonic stability of cratonic crust and for the relative longevity of deep cratonic lithosphere within a dynamic, convecting mantle are explored through a suite of numerical simulations. The simulations allow chemically distinct continents to reside within the upper thermal boundary layer of a thermally convecting mantle layer. A rheologic formulation, which models both brittle and ductile behavior, is incorporated to allow for plate-like behavior and the associated subduction of oceanic lithosphere. Several mechanisms that may stabilize cratons are considered. The two most often invoked mechanisms, chemical buoyancy and/or high viscosity of cratonic root material, are found to be relatively ineffective if cratons come into contact with subduction zones. High root viscosity can provide for stability and longevity but only within a thick root limit in which the thickness of chemically distinct, high-viscosity cratonic lithosphere exceeds the thickness of old oceanic lithosphere by at least a factor of 2. This end-member implies a very thick mechanical lithosphere for cratons. A high brittle yield stress for cratonic lithosphere as a whole, relative to oceanic lithosphere, is found to be an effective and robust means for providing stability and lithospheric longevity. This mode does not require exceedingly deep strength within cratons. A high yield stress for only the crustal or mantle component of the cratonic lithosphere is found to be less effective as detachment zones can then form at the crust-mantle interface which decreases the longevity potential of cratonic roots. The degree of yield stress variations between cratonic and oceanic lithosphere required for stability and longevity can be decreased if cratons are bordered by continental lithosphere that has a relatively low yield stress, i.e., mobile belts. Simulations that combine all the mechanisms can lead to crustal stability and deep root longevity for model cratons over several mantle overturn times, but the dominant stabilizing factor remains a relatively high brittle yield stress for cratonic lithosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the south Sao Francisco craton a circular and 8-m amplitude geoid anomaly coincides with the outcropping terrain of an Archean-Paleoproterozoic basement. Broadband magnetotelluric (MT) data inversions of two radial profiles within the positive geoid and Bouguer gravity anomaly yield geo-electrical crustal sections, whereby the lower crust is locally more conductive (10 to 100 Omega m) in spatial coincidence with a denser lower crust modeled by the gravity data. This anomalous lower crust may have resulted from magmatic underplating, associated with Mesoarchean and Proterozoic episodes of tholeiitic dike intrusion. Long-period MT soundings reveal a low electrical resistivity mantle (20 to 200 Omega m) from depths beyond 120 km. Forward geoid modeling, using the scope of the low electrical resistivity region within the mantle as a constraint, entails a density increase (40 to 50 kg/m(3)) possibly due to Fe enrichment of mantle minerals. However, this factor alone does not explain the observed resistivity. A supplemented presence of small amounts of percolated carbonatite melting (similar to 0.005 vol.%), dissolved water and enhanced oxygen fugacity within the peridotitic mantle are viable agents that could explain the less resistive upper mantle. We propose that metasomatic processes confined in the sub-continental lithospheric mantle foster the conditions for a low degree melting with variable CO(2), H(2)O and Fe content. Even though the precise age of this metasomatism is unknown it might be older than the Early Cretaceous based on the evidence that a high-degree of melting in a lithospheric mantle impregnated with carbonatites originated the tholeiitic dike intrusions dispersed from the southeastern border of the Sao Francisco craton, during the onset of the lithosphere extension and break-up of the western Gondwana. The proxies are the NE Parana and Espinhaco (130 Ma, Ar/Ar ages) tholeiitic dikes, which contain (similar to 3%) carbonatites in their composition. The occurrence of a positive geoid anomaly (+ 10 m) and pre-tholeiites (age > 138 Ma), carbonatites and kimberlites along the west African continental margin (Angola and Namibia) reinforces the presumed age of the Sao Francisco-Congo craton rejuvenation to be prior to its fragmentation in the Lower Cretaceous. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Die Ränder des Labrador Meeres wurden während des späten Neoproterozoikums intensiv von karbonatreichen silikatischen Schmelzen durchsetzt. Diese Schmelzen bildeted sich bei Drucken zwischen ca. 4-6 GPa (ca. 120-180 km Tiefe) an der Basis der kontinentalen Mantel-Lithosphäre. Diese Magmengenerierung steht in zeitlichem und räumlichem Zusammenhang mit kontinentalen Extensionsprozessen, welche zu beiden Seiten des sich öffnenden Iapetus-Ozeans auftraten.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deep crustal structure of the Parana Basin of southern Brazil is investigated by analyzing P- and PP-wave receiver functions at 17 Brazilian Lithosphere Seismic Project stations within the basin. The study area can be described as a typical Paleozoic intracratonic basin that hosts one of the largest Large Igneous Province of the world and makes a unique setting for investigating models of basin subsidence and their interaction with mantle plumes. Our study consists of (1) an analysis of the Moho interaction phases in the receiver functions to obtain the thickness and bulk Vp/Vs ratio of the basin`s underlying crust and (2) a joint inversion with Rayleigh-wave dispersion velocities from an independent tomographic study to delineate the detailed S-wave velocity variation with depth. The results of our analysis reveal that Moho depths and bulk Vp/Vs ratios (including sediments) vary between 41 and 48 km and between 1.70 and 1.76, respectively, with the largest values roughly coinciding with the basin`s axis, and that S-wave velocities in the lower crust are generally below 3.8 km/s. Select sites within the basin, however, show lower crustal S-wave velocities slightly above 3.9 km/s suggestive of underplated mafic material. We show that these observations are consistent with a fragmented cratonic root under the Parana basin that defined a zone of weakness for the initial Paleozoic subsidence of the basin and which allowed localized mafic underplating of the crust along the suture zones by Cenozoic magmatism.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is widely accepted that stabilization of the continental crust requires the presence of sub-continental lithospheric mantle. However, the degree of melt depletion required to stabilize the lithosphere and whether widespread refertilization is a significant process remain unresolved. Here, major and trace element, including platinum group elements (PGE), characterization of 40 mantle xenoliths from 13 localities is used to constrain the melt depletion, refertilization and metasomatic history of lithospheric mantle underneath the micro-continent Zealandia. Our previously published Re–Os isotopic data for a subset of these xenoliths indicate Phanerozoic to Paleoproterozoic ages and, reinterpreted with the new major and trace element data presented here, demonstrate that a large volume (>2 million km3) of lithospheric mantle with an age of 1·99 ± 0·21 Ga is present below the much younger crust of Zealandia. A peritectic melting model using moderately incompatible trace elements (e.g. Yb) in bulk-rocks demonstrates that these peridotites experienced a significant range of degrees of partial melting, between 3 and 28%. During subsolidus equilibration clinopyroxene gains significant rare earth elements (REE), which then leads to the underestimation of the degree of partial melting by ≤12% in fertile xenoliths. A new approach taking into account the effects of subsolidus re-equilibration on clinopyroxene composition effectively removes discrepancies in the calculated degree of melting and provides consistent estimates of between 4 and 29%. The estimated amount of melting is independent of the Re–Os model ages of the samples. The PGE patterns record simple melt depletion histories and the retention of primary base metal sulfides in the majority of the xenoliths. A rapid decrease in Pt/IrN observed at c. 1·0 wt % Al2O3 is a direct result of the exhaustion of sulfide in the mantle residue at c. 20–25% partial melting and the inability of Pt to form a stable alloy phase. Major elements preserve evidence for refertilization by a basaltic component that resulted in the formation of secondary clinopyroxene and low-forsterite olivine. The majority of xenoliths show the effects of cryptic metasomatic overprinting, ranging from minor to strong light REE enrichments in bulk-rocks (La/YbN = 0·16–15·9). Metasomatism is heterogeneous, with samples varying from those with weak REE enrichment and notable positive Sr and U–Th anomalies and negative Nb–Ta anomalies in clinopyroxene to those that have extremely high concentrations of REE, Th–U and Nb. Chemical compositions are consistent with a carbonatitic component contributing to the metasomatism of the lithosphere under Zealandia. Notably, the intense metasomatism of the samples did not affect the PGE budget of the peridotites as this was controlled by residual sulfides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The earth's tectonic plates are strong, viscoelastic shells which make up the outermost part of a thermally convecting, predominantly viscous layer. Brittle failure of the lithosphere occurs when stresses are high. In order to build a realistic simulation of the planet's evolution, the complete viscoelastic/brittle convection system needs to be considered. A particle-in-cell finite element method is demonstrated which can simulate very large deformation viscoelasticity with a strain-dependent yield stress. This is applied to a plate-deformation problem. Numerical accuracy is demonstrated relative to analytic benchmarks, and the characteristics of the method are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High Precision U-Pb zircon and monazite dating in the Aiguilles Rouges-Mont Blanc area allowed discrimination of three short-lived bimodal magmatic pulses: the early 332 Ma Mg-K Pormenaz monzonite and associated 331 Ma peraluminous Montees Pelissier monzogranite; the 307 Ma cordierite-bearing peraluminous Vallorcine and Fully intrusions; and the 303 Fe-K Mont Blanc syenogranite. All intruded syntectonically along major-scale transcurrent faults at a time when the substratum was experiencing tectonic exhumation, active erosion recorded in detrital basins and isothermal decompression melting dated at 327-320 Ma. Mantle activity and magma mixing are evidenced in all plutons by coeval mafic enclaves, stocks and synplutonic dykes. Both crustal and mantle sources evolve through time, pointing to an increasingly warm continental crust and juvenile asthenospheric mantle sources. This overall tectono-magmatic evolution is interpreted in a scenario of post-collisional restoration to normal size of a thickened continental lithosphere. The latter re-equilibrates through delamination and/or erosion of its mantle root and tectonic exhumation/erosion in an overall extensional regime. Extension is related to either gravitational collapse or back-are extension of a distant subduction zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One hypothesis for the origin of alkaline lavas erupted on oceanic islands and in intracontinental settings is that they represent the melts of amphibole-rich veins in the lithosphere (or melts of their dehydrated equivalents if metasomatized lithosphere is recycled into the convecting mantle). Amphibole-rich veins are interpreted as cumulates produced by crystallization of low-degree melts of the underlying asthenosphere as they ascend through the lithosphere. We present the results of trace-element modelling of the formation and melting of veins formed in this way with the goal of testing this hypothesis and for predicting how variability in the formation and subsequent melting of such cumulates (and adjacent cryptically and modally metasomatized lithospheric peridotite) would be manifested in magmas generated by such a process. Because the high-pressure phase equilibria of hydrous near-solidus melts of garnet lherzolite are poorly constrained and given the likely high variability of the hypothesized accumulation and remelting processes, we used Monte Carlo techniques to estimate how uncertainties in the model parameters (e.g. the compositions of the asthenospheric sources, their trace-element contents, and their degree of melting; the modal proportions of crystallizing phases, including accessory phases, as the asthenospheric partial melts ascend and crystallize in the lithosphere; the amount of metasomatism of the peridotitic country rock; the degree of melting of the cumulates and the amount of melt derived from the metasomatized country rock) propagate through the process and manifest themselves as variability in the trace-element contents and radiogenic isotopic ratios of model vein compositions and erupted alkaline magma compositions. We then compare the results of the models with amphibole observed in lithospheric veins and with oceanic and continental alkaline magmas. While the trace-element patterns of the near-solidus peridotite melts, the initial anhydrous cumulate assemblage (clinopyroxene +/- garnet +/- olivine +/- orthopyroxene), and the modelled coexisting liquids do not match the patterns observed in alkaline lavas, our calculations show that with further crystallization and the appearance of amphibole (and accessory minerals such as rutile, ilmenite, apatite, etc.) the calculated cumulate assemblages have trace-element patterns that closely match those observed in the veins and lavas. These calculated hydrous cumulate assemblages are highly enriched in incompatible trace elements and share many similarities with the trace-element patterns of alkaline basalts observed in oceanic or continental setting such as positive Nb/La, negative Ce/Pb, and similiar slopes of the rare earth elements. By varying the proportions of trapped liquid and thus simulating the cryptic and modal metasomatism observed in peridotite that surrounds these veins, we can model the variations in Ba/Nb, Ce/Pb, and Nb/U ratios that are observed in alkaline basalts. If the isotopic compositions of the initial low-degree peridotite melts are similar to the range observed in mid-ocean ridge basalt, our model calculations produce cumulates that would have isotopic compositions similar to those observed in most alkaline ocean island basalt (OIB) and continental magmas after similar to 0 center dot 15 Gyr. However, to produce alkaline basalts with HIMU isotopic compositions requires much longer residence times (i.e. 1-2 Gyr), consistent with subduction and recycling of metasomatized lithosphere through the mantle. such as a heterogeneous asthenosphere. These modelling results support the interpretation proposed by various researchers that amphibole-bearing veins represent cumulates formed during the differentiation of a volatile-bearing low-degree peridotite melt and that these cumulates are significant components of the sources of alkaline OIB and continental magmas. The results of the forward models provide the potential for detailed tests of this class of hypotheses for the origin of alkaline magmas worldwide and for interpreting major and minor aspects of the geochemical variability of these magmas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract: Microbial mats very efficiently cycle elements, such as C, 0, N, S and H, which makes them key players of redox processes at the biosphere-lithosphere interface. They are characterized by high metabolic activities and high turnover rates (production and consumption) of biomass, which mainly consists of cell material and of extracellular organic matter (EOM). The EOM forms a matrix, embedding the microbial cells and fulfilling various functions within the microbial mat, including: mat attachment to surfaces; creation of micro-domains within the mat; physical stabilization under hy- drodynamic stress and the protection of the cells in multiple other stress conditions. EOM mainly consists of polysaccharides, amino acids, and a variety of chemical func-tional groups {e.g., -C00H, - SH -OH). These groups strongly bind cations such as Ca2+ and Mg2+ and thus exert a strong control on carbonate mineral formation within the microbial mat. A feedback mechanism between community metabolisms, their prod¬ucts, and the surrounding physicochemical microenvironment thus influences the de¬gree of carbonate saturation favoring either carbonate precipitation or dissolution. We investigated the driving forces and mechanisms of microbialite formation in the Sari ne River, FR, Switzerland, the hypersaline lake, Big Pond, Bahamas and in labo¬ratory experiments. The two fundamentally different natural systems allowed us to compare the geochemical conditions and microbial metabolisms, necessary for car¬bonate formation in microbial mats. Although carbonates are oversaturated in both environments, precipitation does not occur on physicochemical substrates (i.e. out¬side the microbial mats). In the Sarine a high crystal nucleation threshold exceeds the carbonate saturation, despite the high carbonate alkalinity in the water column. Cyanobacterial photosynthesis strongly locally enhances the carbonate alkalinity, whereas the EOM attract and immobilize calcium, which increases the saturation state and finally leads to carbonate precipitation within the EOM (in this case the cyanobacterial sheath) as nucleation template. In Big Pond, the presence of calcium- chelating anions (i.e. sulfate) and EOM, as well as the presence of magnesium, lowers the calcium activity in the water column and mat, and thus inhibits carbonate pre¬cipitation. Coupled with other heterotrophic metabolisms, sulfate reduction uses the EOM as carbon source, degrading it. The resulting EOM consumption creates alkalin¬ity, releases calcium and consumes sulfate in mat-micro domains, which leads to the formation of carbonate layers at the top of the microbial mat. Résumé: Interface biosphère/lithosphère: médiation microbienne de la précipitation de CaC03 dans des environnements en eaux douces et hypersalines Les tapis microbiens engendrent une circulation très efficace des éléments, tels que C, 0, N, S et H, ce qui en fait des acteurs clé pour les processus d'oxydoréduction à l'inter¬face biosphère-lithosphère. Ils sont caractérisés par des taux élevés d'activité méta¬bolique, ainsi que par la production et la consommation de biomasse, principalement constituée de cellules microbiennes et de matière organique extracellulaire (MOE). Dans un tapis microbien, les cellules microbiennes sont enveloppées par une matrice de MOE qui a différentes fonctions dont l'attachement du tapis aux surfaces, la créa¬tion de micro-domaines dans le tapis, la stabilisation physique en situation de stress hydrodynamique, et la protection des cellules dans de multiples autres conditions de stress. La MOE se compose principalement de polysaccharides, d'acides aminés, et d'une variété de groupes fonctionnels chimiques (par exemple, COOH, -SH et -OH). Ces groupes se lient fortement aux cations, tels que Ca2+ et Mg2+, et exercent ainsi un contrôle fort sur la formation de CaC03 dans le tapis microbien. Un mécanisme de rétroaction, entre les métabolismes de la communauté microbienne, leurs produits, et le microenvironnement physico-chimique, influence le degré de saturation de car¬bonate, favorisant soit leur précipitation, soit leur dissolution. Nous avons étudié le moteur et les mécanismes de minéralisation dans des tapis de la Sarine, FR, Suisse et du lac hypersalin, Big Pond, aux Bahamas, ainsi que durant des expériences en laboratoire. Les deux systèmes naturels, fondamentalement dif¬férents, nous ont permis de comparer les conditions géochimiques et les métabolis¬mes nécessaires à la formation des carbonates dans des tapis microbiens. Bien que les carbonates soient sursaturés dans les deux environnements, la précipitation ne se produit pas sur des substrats physico-chimiques (en dehors du tapis microbien). Dans la Sarine, malgré un taux d'alcalinité élevé, les valeurs de seuil pour la nucléa- tion de carbonates sont plus hautes que la saturation du carbonate. La photosynthèse cyanobactérienne augmente localement l'alcalinité, alors que la MOE attire et immo¬bilise le calcium, ce qui augmente l'état de saturation et conduit finalement à la pré¬cipitation des carbonates, en utilisant la MOE comme substrat de nucléation. À Big Pond, la présence de chélateurs de calcium, notamment les anions (p.ex. le sulfate) et la MOE, ainsi que la présence de magnésium, réduit l'activité du calcium et inhibe en conséquence la précipitation des carbonates. Couplée avec d'autres métabolismes hétérotrophes, la réduction des sulfates utilise la MOE comme source de carbone, en la dégradant. Cette consommation de MOE crée l'alcalinité, consomme des sulfates et libère du calcium dans des micro-domaines, conduisant à la formation de couches de carbonates dans le haut du tapis microbien.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite the key importance of altered oceanic mantle as a repository and carrier of light elements (B, Li, and Be) to depth, its inventory of these elements has hardly been explored and quantified. In order to constrain the systematics and budget of these elements we have studied samples of highly serpentinized (>50%) spinel harzburgite drilled at the Mid-Atlantic Ridge (Fifteen-Twenty Fracture zone, ODP Leg 209, Sites 1272A and 1274A). In-situ analysis by secondary ion mass spectrometry reveals that the B, Li and Be contents of mantle minerals (olivine, orthopyroxene, and clinopyroxene) remain unchanged during serpentinization. B and Li abundances largely correspond to those of unaltered mantle minerals whereas Be is close to the detection limit. The Li contents of clinopyroxene are slightly higher (0.44-2.8 mu g g(-1)) compared to unaltered mantle clinopyroxene, and olivine and clinopyroxene show an inverse Li partitioning compared to literature data. These findings along with textural observations and major element composition obtained from microprobe analysis suggest reaction of the peridotites with a mafic silicate melt before serpentinization. Serpentine minerals are enriched in B (most values between 10 and 100 mu g g(-1)), depleted in Li (most values below I mu g g(-1)) compared to the primary phases, with considerable variation within and between samples. Be is at the detection limit. Analysis of whole rock samples by prompt gamma activation shows that serpentinization tends to increase B (10.4-65.0 mu g g(-1)), H2O and Cl contents and to lower Li contents (0.07-3.37 mu g g(-1)) of peridotites, implying that-contrary to alteration of oceanic crust-B is fractionated from Li and that the B and Li inventory should depend essentially on rock-water ratios. Based on our results and on literature data, we calculate the inventory of B and Li contained in the oceanic lithosphere, and its partitioning between crust and mantle as a function of plate characteristics. We model four cases, an ODP Leg 209-type lithosphere with almost no igneous crust, and a Semail-type lithosphere with a thick igneous crust, both at I and 75 Ma, respectively. The results show that the Li contents of the oceanic lithosphere are highly variable (17-307 kg in a column of I m x I m x thickness of the lithosphere (kg/col)). They are controlled by the primary mantle phases and by altered crust, whereas the B contents (25-904 kg/col) depend entirely on serpentinization. In all cases, large quantities of B reside in the uppermost part of the plate and could hence be easily liberated during slab dehydration. The most prominent input of Li into subduction zones is to be expected from Semail-type lithosphere because most of the Li is stored at shallow levels in the plate. Subducting an ODP Leg 209-type lithosphere would mean only very little Li contribution from the slab. Serpentinized mantle thus plays an important role in B recycling in subduction zones, but it is of lesser importance for Li. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Upper-mantle seismic anisotropy has been extensively used to infer both present and past deformation processes at lithospheric and asthenospheric depths. Analysis of shear-wave splitting (mainly from core-refracted SKS phases) provides information regarding upper-mantle anisotropy. We present average measurements of fast-polarization directions at 21 new sites in poorly sampled regions of intra-plate South America, such as northern and northeastern Brazil. Despite sparse data coverage for the South American stable platform, consistent orientations are observed over hundreds of kilometers. Over most of the continent, the fast-polarization direction tends to be close to the absolute plate motion direction given by the hotspot reference model HS3-NUVEL-1A. A previous global comparison of the SKS fast-polarization directions with flow models of the upper mantle showed relatively poor correlation on the continents, which was interpreted as evidence for a large contribution of ""frozen"" anisotropy in the lithosphere. For the South American plate, our data indicate that one of the reasons for the poor correlation may have been the relatively coarse model of lithospheric thicknesses. We suggest that improved models of upper-mantle flow that are based on more detailed lithospheric thicknesses in South America may help to explain most of the observed anisotropy patterns.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)