152 resultados para cpue
Resumo:
Se trabajó utilizando una metodología basada en Modelos Lineales Generalizados (MLG). La CPUE fue expresada en toneladas por duración de viaje. Las variables explicativas utilizadas fueron el año, mes, capacidad de bodega, latitud, inercia espacial y distancia a la costa. El modelo tuvo un coeficiente de determinación de 0,485, explicando casi la mitad de la variabilidad de la CPUE observada. La variable con mayor influencia en el modelo fue la capacidad de bodega (49% de la varianza explicada), debido posiblemente a que la flota anchovetera posee una capacidad elevada de captura y que los recursos pelágicos tienden a hiper-agregarse, incluso cuando están siendo fuertemente explotados. La correlación entre la CPUE estandarizada y biomasa estimada por un modelo de captura a la edad (r=0,74) indica que el método basado en MLG es recomendable para la estandarización de la CPUE. Se propone a esta CPUE como una alternativa para monitorear la biomasa de la anchoveta.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The collection of basic environmental data by industry members was successful and offers a way of overcoming the problems associated with differences in scale between the environment and fisheries datasets. A simple method of collecting environmental data was developed that was only a small time burden on skippers, yet has the potential to provide very useful information on the same scale as the catch and effort data recorded in the logbooks. The success of this trial was aided by the natural interest of fishers to learn more about the environment in which they fish. The archival temperature-depth tags chosen proved robust, reliable and easy to use. While the use of large scale environmental data may not yield significant improvements in stock assessments for most SESSF species, fine-scale data collected from selected vessels using methods developed during this project may, in the longer term, be useful for incorporation into CPUE standardisations in the future...
Resumo:
The effects of fish density distribution and effort distribution on the overall catchability coefficient are examined. Emphasis is also on how aggregation and effort distribution interact to affect overall catch rate [catch per unit effort (cpue)]. In particular, it is proposed to evaluate three indices, the catchability index, the knowledge parameter, and the aggregation index, to describe the effectiveness of targeting and the effects on overall catchability in the stock area. Analytical expressions are provided so that these indices can easily be calculated. The average of the cpue calculated from small units where fishing is random is a better index for measuring the stock abundance. The overall cpue, the ratio of lumped catch and effort, together with the average cpue, can be used to assess the effectiveness of targeting. The proposed methods are applied to the commercial catch and effort data from the Australian northern prawn fishery. The indices are obtained assuming a power law for the effort distribution as an approximation of targeting during the fishing operation. Targeting increased catchability in some areas by 10%, which may have important implications on management advice.
Resumo:
In the coastal region of central Queensland female red-spot king prawns, P. longistylus, and the western or blue-leg king prawns, P. latisulcatus, had high mean ovary weights and high proportions of advanced ovary development during the winter months of July and August of 1985 and 1986. On the basis of insemination, both species began copulating at the size of 26-27 mm CL, but P. longistylus matured and spawned at a smaller size than P. latisulcatus. Abundance of P. longistylus was generally three to four times greater than that of P. latisulcatus but the latter was subject to greater variation in abundance. Low mean ovary weight and low proportions of females with advanced ovaries were associated with the maximum mean bottom sea-water temperature (28.5ºC) for both species. Population fecundity indices indicated that peaks in yolk or egg production (a) displayed a similar pattern for both species, (b) varied in timing from year to year for both species and (c) were strongly influenced by abundance. Generally, sample estimates of abundance and commercial catch rates (CPUE) showed similar trends. Differences between the two may have been due to changes in targeted commercial effort in this multi-species fishery.
Resumo:
Three data sets were examined to define the level of interaction of reef associated sharks with the commercial Coral Reef Fin Fish Fishery within the Great Barrier Reef (GBR). Data were examined from fishery logbooks, an observer program within the fishery and a fishery-independent survey conducted as part of the Effects of Line Fishing (ELF) Experiment. The majority of the identified catch was comprised of grey reef (62-72%), whitetip reef (16-29%) and blacktip reef (6-13%) sharks. Logbook data revealed spatially and temporally variable landings of shark from the GBR. Catch per unit effort (CPUE) through time was stable for the period from 1989 to 2006 with no evidence of increase or decline. Data from observer and ELF data sets indicated no differences in CPUE among regions. The ELF data set demonstrated that CPUE was higher in Marine National Park zones (no fishing) when compared to General Use zones (open to fishing). The ongoing and consistent catches of reef sharks in the fishery and effectiveness of no-fishing zones suggest that management zones within the GBR Marine Park are effective at protecting a portion of the reef shark population from exploitation.
Resumo:
Combating the spread of invasive fish is problematic, with eradication rarely possible and control options varying enormously in their effectiveness. In two small impoundments in north-eastern Australia, an electrofishing removal program was conducted to control an invasive tilapia population. We hypothesised that electrofishing would reduce the population density of Oreochromis mossambicus (Mozambique tilapia), to limit the risk of downstream spread into areas of high conservation value. We sampled by electrofishing monthly for 33 months. Over this period, there was an 87% decline in catch per unit effort (CPUE) of mature fish, coupled with a corresponding increase of 366% in the number of juveniles, suggesting a density-dependent response in the stock-recruitment relationship for the population. Temperature was inversely related to CPUE (r=0.43, lag=10 days), implying greater electrofishing efficiency in cooler months. The reduction in breeding stock is likely to reduce the risk of spread and render the population vulnerable to other control measures such as netting and/or biological control. Importantly, the current study suggests routine electrofishing may be a useful control tool for invasive fish in small impoundments when the use of more destructive techniques, such as piscicides, is untenable.
Resumo:
The Red Throat Emperor fishery was assessed using an age-structured model that incorporated all available information on catch, catch per unit effort (CPUE) and age structure and a surplus production model fitted to the catch and CPUE data. The Great Barrier Reef (GBR) was divided into five regions: Townsville, Mackay, Storm Cay, Swain reefs, and Capricorn Bunker. Age structure varied greatly between regions, with fish aged 5-8 years predominating in the Townsville region, 4-7 years in the Mackay, Storm Cay and Swains regions, and 2-3 years in the Capricorn-Bunker region. These differences were explained by different age-dependent vulnerabilities to fishing between the regions. The age-structured model estimated that exploitable biomass fell to about 60% of virgin biomass in the late 1990s, due mainly to years of poor recruitment, but recovered to around 70% by 2004. Further recovery can be expected due to the fishery not meeting its total allowable commercial catch (TACC) of 700 t in recent years. The current TACC of 700 t, combined with a recreational-charter catch of around 450 t, contains little margin for error, especially in view of high year-to-year variability of recruitment of red throat emperor and stresses on the GBR from land clearing, coastal development and climate change. The state of the population needs to be monitored closely. Further data on age structures after 2000 will provide more certainty to this assessment.
Resumo:
Suitable long term species-specific catch rate and biological data are seldom available for large shark species, particularly where historical commercial logbook reporting has been poor. However, shark control programs can provide suitable data from gear that consistently fishes nearshore waters all year round. We present an analysis of the distribution of 4757 . Galeocerdo cuvier caught in surface nets and on drumlines across 9 of the 10 locations of the Queensland Shark Control Program (QSCP) between 1993 and 2010. Standardised catch rates showed a significant decline (p<. 0.0001) in southern Queensland locations for both gear types, which contrasts with studies at other locations where increases in tiger shark catch per unit effort (CPUE) have been reported. Significant temporal declines in the average size of tiger sharks occurred at four of the nine locations analysed (p<. 0.05), which may be indicative of fishing reducing abundance in these areas. Given the long term nature of shark control programs along the Australian east coast, effects on local abundance should have been evident many years ago, which suggests that factors other than the effects of shark control programs have also contributed to the decline. While reductions in catch rate are consistent with a decline in tiger shark abundance, this interpretation should be made with caution, as the inter-annual CPUE varies considerably at most locations. Nevertheless, the overall downward trend, particularly in southern Queensland, indicates that current fishing pressures on the species may be unsustainable. © 2012 Elsevier B.V.
Resumo:
This assessment applies to cobia (Rachycentron canadum) located in the territorial waters of the U.S. Gulf of Mexico. Separation of the Gulf of Mexico and Atlantic Ocean is defined by the seaward extension of the Dade/Monroe county line in south Florida. Mixing of fish between the Atlantic and Gulf of Mexico occurs in the Florida Keys during winter months. Cobia annually migrate north in early spring in the Gulf to spawning grounds in the northern Gulf of Mexico, returning to the Florida Keys by winter. Catches of cobia in the Gulf of Mexico are dominated by recreational landings, accounting for nearly 90% of the total. Since 1980, the landings of cobia in the recreational fishery have remained fairly stable at around 400-600 mt with a slight peak of 1,014 mt in 1997. The recreational fishery was estimated to have landed 471 mt in 2000. The landings from the commercial fishery have shown a steady increase from 45 mt in 1980 to a peak of 120 mt in 1994, followed by a decline to 62 mt in 2000. The previous assessment of cobia occurred in 1996 using a virtual population analysis (VPA) model. For this analysis a surplus-production model (ASPIC) and a forward-projecting, age-structured population model programmed in the AD Model Builder (ADMB) software were applied to cobia data from the Gulf of Mexico. The primary data consisted of four catch-per-unit-effort (CPUE) indices derived from the Marine Recreational Fisheries Statistics Survey (MRFSS) (1981-1999), Southeast region headboat survey (1986-1999), Texas creel survey (1983-1999), and shrimp bycatch estimates (1980-1999). Length samples were available from the commercial (1983-2000) and recreational (1981-2000) fisheries. The ASPIC model applied to the cobia data provided unsatisfactory results. The ADMB model fit described the observed length composition data and fishery landings fairly well based on graphical examination of model residuals. The CPUE indices indicated some disagreement for various years, but the model fit an overall increasing trend from 1992-1997 for the MRFSS, headboat, and Texas creel indices. The shrimp bycatch CPUE was treated as a recruitment index in the model. The fit to these data followed an upward trend in recruitment from 1988-1997, but did not fit the 1994-1997 data points very well. This was likely the result of conflicting information from other data sources. Natural mortality (M) for cobia is unknown. As a result, a range of values for M from 0.2-0.4, based on longevity and growth parameters, were selected for use in the age-structured model. The choice of natural mortality appears to greatly influence the perceived status of the population. Population status as measured by spawning stock biomass in the last year relative to the value at maximum sustainable yield (SSB2000/SSBMSY), spawning stock biomass in the last year relative to virgin spawning stock biomass (SSB2000/S0), and static spawning stock biomass per recruit (SSBR) all indicate the population is either depleted, near MSY, or well above MSY depending on the choice of M. The variance estimates for these benchmarks are very large and in most cases ranges from depleted to very healthy status. The only statement that can be made with any degree of certainty about cobia in the Gulf of Mexico is that the population has increased since the 1980s. (PDF contains 61 pages)
Resumo:
Nearshore 0-group western Baltic cod are frequently caught as bycatch in the commercial pound net fishery. Pound net fishermen from the Danish Isle of Funen and Lolland and the German Isle of Fehmarn have recorded their catches of small cod between September and December 2008. Abundance patterns were analysed, particularly concerning the influence of abiotic factors (hydrography, meteorology) and the differences between sampling sites. Catch per unit effort (CPUE) differed by site and location, whereas CPUE were highest at Lolland. Correlation between catch and wind/currents were generally weak. However, wind directions and current speeds seem to affect the catch rates. Finally an algorithm was developed to calculate a recruitment index for western Baltic cod recruitment success based on previous analyses.
Resumo:
Recently, the German redfish fishery displayed a pronounced seasonal pattern in geographic effort distribution and depth. The second and third quarters were the main season when 80 % of the effort was exerted. During the second quarter, the fleet activities were concentrated in international waters close to the Icelandic Exclusive Economic Zone (EEZ), fishing at depths exceeding 600 m. In contrast, the catches in the third quarter were taken mainly inside the Greenland EEZ at depths around 300 m. From 1995 to 1998, the annual effort ranged from 14 000 to 18 000 trawling hours, without a trend. This effort yielded about 18 000 to 21 000 t (international catch > 100 000 t) annually. Since 1996, the catch rate (CPUE) decreased during the main season. The decrease in CPUE should be interpreted as the first reaction of the stock to increased exploitation. The fish size also varied seasonally and peaked during the second quarter at depths exceeding 600 m. Here, males were bigger than females and both sexes were equally frequent. The increase of fish size with increasing depth did not contribute to the hypothesis of two separate pelagic redfish stocks above and below 500 m. In contrast, the close relation between fish size and depth point to the so-called “deeper-bigger phenomenon” which was found in numerous fish stocks. Very few redfish in the catches were immature.
Resumo:
ENGLISH: The abundance of skipjack larvae in the central and western Pacific approximately doubled for every 1°C increase in sea-surface temperature (SST) from 23°C to a maximum of about 29°C, and then usually decreased with further increases in SST. Skipjack larvae are scarce in the eastern Pacific Ocean (EPO), so most skipjack recruits and adults in this area are believed to have originated in the central and, possibly, the western Pacific. The catch per unit of effort (CPUE), in short tons per day's fishing, and the catch rate, in number of fish per day's fishing, are estimates of apparent abundance in a fishery. The logarithm of the annual CPUE for skipjack for international baitboats in the EPO for the 1934-1960 period was positively correlated with SST in the spawning area in the central Pacific 18 months earlier (r2 0.31), during the July-June period when most of the recruits in each cohort were presumed to have been spawned. Adequate data for other environmental variables were not available for testing with the baitboat data. The other environmental variables available and selected for testing for correlation with estimates of skipjack abundance for purse seiners for the 1961-1984 period and the reasons for their selection are as follows. 1)Wind-mixing index (WMI). The degree of mixing in the upper layers of the ocean is proportional to the cube of the wind speed, called WMI. The degree of mixing in the spawning areas of the central and the western Pacific may affect the concentration of organisms that skipjack larvae feed upon, thereby influencing their survival, and ultimately determining cohort strength and the number of recruits to the eastern Pacific fishery. 2) SST in the fishing areas at the time of fishing (SST). The CPUE for yellowfin tuna has been shown to be inversely related to SST in the fishing areas, and there are indications that skipjack CPUE is lower during EI Nino events when SST is higher than normal. 3) North-south SST gradient across the thermal front off the Gulf of Guayaquil. This is a measure of the degree of upwelling and nutrient enrichment of the upper waters south of the front and ultimately of the production of food for tunas. 4) Speed of the North Equatorial Countercurrent (NECC). Young skipjack may migrate from the central Pacific to the EPO in the eastward flowing NECC; if so, the number of recruits might be affected by variations in the speed of the current. The logarithm of the annual catch rate of skipjack recruits by international purse seiners in the EPO for the 1961-1984 period was positively correlated with SST in the spawning area of the central Pacific 18 months earlier (r2 = 0.21),and inversely correlated with WMI in the spawning area 18 months earlier (r2 0.46). The logarithm of CPUE for purse seiners in the area off the Gulf of Guayaquil was not correlated with SST in the spawning area 18 months earlier, but was inversely correlated with WMI in the spawning area 18 months earlier (r2 = 0.19), and inversely correlated with the north-south SST gradient in the fishing area at the time of fishing (r2 0.32). Neither of these estimates of apparent abundance from purse seiners were correlated with SST in the fishing areas, or with the speed of the NECC at earlier times. SPANISH: La abundancia de larvas de barrilete en el Pacífico central y occidental se multiplicó por dos, aproximadamente, por cada aumento de 1°Cen la temperatura de la superficie del mar (TSM) entre 23°C y un máximo de unos 29°C, y luego generalmente disminuyó con más aumentos en la TSM. Las larvas de barrilete son escasas en el Océano Pacífico oriental (OPO), y por lo tanto se cree que la mayoría de los reclutas y adultos en esta zona surgieron del Pacífico central, y posiblemente también del Pacífico occidental. La captura por unidad de esfuerzo (CPUE), en toneladas cortas por día de pesca, y la tasa de captura, en número de peces por día de pesca, son estimaciones de la abundancia aparente en una pesquería. El logaritmo de la CPUE anual de barrilete lograda por barcos de carnada en el OPO en el período 1934-1960 se correlacionó positivamente con la TSM en la zona de desove en el Pacífico central de 18 meses antes (r2 = 0.31), durante el período de junio-julio en el cual se cree que nació la mayoría de los reclutas en cada cohorte. No se dispuso de datos suficientes sobre otras variables ambientales para comprobarlos con los datos de los barcos de carnada. Las demás variables ambientales disponibles y seleccionadas para someterlas a pruebas de correlación con las estimaciones de la abundancia del barrilete de barcos cerqueros en el período 1961-1984, y las razones por su selección, son las siguientes: 1) Indice de mezcla por el viento (IMV). El grado de mezcla en las capas superiores del océano es proporcional al cubo de la velocidad del viento, llamado IMV. Es posible que el grado de mezcla en las zonas de desove del Pacífico central y occidental afecte la concentración de los organismos que alimentan a las larvas del barrilete, afectando así la supervivencia de éstas, y finalmente determinando el tamaño de las cohortes y el número de reclutas a la pesquería del OPO. 2) TSM en la zona de pesca al realizarse la pesca (TSM). Se ha mostrado que la relación de la CPUE del atún aleta amarilla a la TSM en la zona de pesca es inversa, y existen indicaciones que la CPUE de barrilete es inferior durante eventos del Niño, cuando las TSM son superiores a lo normal. 3) Gradiente norte-sur de las TSM a través del frente térmico frente al Golfo de Guayaquil. Esto es una medida del grado de afloramiento y enriquecimiento nutritivo del nivel superior de las aguas al sur de dicho frente, y finalmente de la producción de alimento para los atunes. 4) La velocidad de la Contracorriente Ecuatorial del Norte (CCEN). Es posible que los bariletes juveniles migren del Pacífico central al Pacífico oriental en la CCEN, que fluye hacia el este; de ser así, es posible que la cantidad de reclutas se vea afectada por variaciones en la velocidad de la corriente. El logaritmo de la tasa anual de captura de reclutas de barrilete por cerqueros de varias banderas en el OPO en el período 1961-1964 estuvo correlacionado de forma positiva con las TSM en la zona de desove del Pacífico central de 18meses antes (r2 0.21),y de forma inversa con el IMV de la zona de desove de 18 meses antes (r2 0.46). El logaritmo de la CPUE de los cerqueros en la zona frente al Golfo de Guayaquil no estuvo correlacionado con las TSM en la zona de desove de 18 meses antes, pero sí estuvo correlacionado de forma inversa con el IMV en la zona de desove de 18 meses antes (r2 0.19),y con el gradiente norte-sur de las TSM en la zona de pesca al realizarse la pesca (r2 0.32). Ninguna de estas estimaciones de abundancia aparente provenientes de barcos cerqueros estuvo correlacionada con las TSM en las zonas de pesca o con la velocidad de la CCEN en épocas anteriores. (PDF contains 140 pages.)