193 resultados para coupler
Resumo:
Here, we demonstrate that efficient nano-optical couplers can be developed using closely spaced gap plasmon waveguides in the form of two parallel nano-sized rectangular slots in a thin metal film or membrane. Using the rigorous numerical finite-difference and finite element algorithms, we investigate the physical mechanisms of coupling between two neighboring gap plasmon waveguides and determine typical coupling lengths for different structural parameters of the coupler. Special attention is focused onto the analysis of the effect of such major coupler parameters, such as thickness of the metal film/membrane, slot width, and separation between the plasmonic waveguides. Detailed physical interpretation of the obtained unusual dependencies of the coupling length on slot width and film thickness is presented based upon the energy consideration. The obtained results will be important for the optimization and experimental development of plasmonic sub-wavelength compact directional couplers and other nano-optical devices for integrated nanophotonics.
Resumo:
This work investigates the feasibly in using a low noise “C” Band block down-converter as a Ultra High Frequency window coupler for the detection of partial discharge activity from free conducting practices and a protrusion on the high voltage conductor in Gas Insulated Switchgear. The investigated window coupler has a better sensitivity than the internal Ultra High Frequency couplers fitted to the system. The investigated window couplers however are sensitive to changes in the frequency content of the discharge signals and appear to be less sensitive to negative discharges signals produced by a protrusion than the positive discharge signals.
Resumo:
This paper reports a new design of microstrip directional coupler with high directivity. This directional coupler uses corrugated coupled lines and floating conductor in the ground plane of microstrip to enhance coupling. Based on this structure, directional coupler having 4.4% bandwidth has been designed at 4500 MHz with 10 dB coupling and 35 dB directivity. The designed directional coupler has been fabricated and tested for the validity of the design. Measured results are presented in this paper.
Resumo:
We investigate the quantum superchemistry or Bose-enhanced atom-molecule conversions in a coherent output coupler of matter waves, as a simple generalization of the two-color photoassociation. The stimulated effects of molecular output step and atomic revivals are exhibited by steering the rf output couplings. The quantum noise-induced molecular damping occurs near a total conversion in a levitation trap. This suggests a feasible two-trap scheme to make a stable coherent molecular beam.
Resumo:
We present two novel 1XN dynamic optical couplers that are based on Dammann gratings to achieve dynamic optical coupled technology. One is presented by employing a specially designed Dammann grating that consists of the Dammann-grating area and the blank area. The other is developed by using two complementary even-numbered Dammann gratings. The couplers can achieve the function conversion between a beam splitter and a combiner according to the modulation of the gratings. We have experimentally demonstrated 1X8 dynamic optical couplers at the wavelength of 1550 nm. The experimental results and the analyses are reported in detail.
Resumo:
Coupling a single-mode laser diode with 200 mW to a single-mode fiber (SMF) through an orthonormal aspherical cylindrical lens and a GRIN lens for the intersatellite optical communication system is proposed and demonstrated. We experimentally studied how the coupling efficiency changes with the SMF's position displacement and axial angle variation, and obtained 80 mW output power at the end of the SMF, which shows that the coupling units have satisfied the designed request. (c) 2007 Elsevier GmbH. All rights reserved.
Resumo:
A wavelength division multiplexer (WDM) for 980/1550 nm based on planar curved waveguide coupler (CWC) is proposed. Compared with conventional parallel straight waveguide coupler (SWC), this structure has more flexibility with two variable parameters of bending radius R and minimum edge-to-edge spacing do, which are the two main parameters for the splitting ratio of coupler and decrease the complexity of device design and fabrication. Based on coupled mode theory (CMT) and waveguide theory, R and do of the WDM CWC are designed to be R = 13.28 m and d(0) = 4.39 mu m. The contrast ratio (CR) and insertion loss (IL) for 980 and 1550 nm are CR1 = 24.62 dB, CR2 = 24.56 dB and IL1 = 0.014 dB, IL2 = 0.015 dB, respectively. The 3D beam propagation method (BPM) is used to verify the validity of the design result. The influence of R and d(0) variations on the device performance is analyzed. For CR > 20 dB, the variation ranges of R and d(0) should be within -0.10 to +0.44 m and -0.05 to + 0.02 mu m, respectively. (c) 2006 Elsevier GmbH. All rights reserved.
Resumo:
We report a novel technique for spectral shaping of femtosecond pulses employing a prism-waveguide coupler (PWC). It is demonstrated that the PWC is capable of producing a frequency-dependent loss with greater attenuation at the peak of the spectrum profile of femtosecond pulses than in the wings, which is especially useful for compensation for gain narrowing in most chirped-pulse amplification laser systems.
Resumo:
An extremely compact active optoelectronic crosspoint switch, having overall dimensions of 400 μm×200 μm, is reported. The device provides unity facet-to-facet gain for both bar and cross state operation for TE or TM input signals.
All-optical switching in a vertical coupler space switch employing photocarrier-induced nonlinearity
Resumo:
A novel compact integrated nonlinear optical switch is demonstrated. Using a high-power picosecond pulse of 5-ps pulsewidth and 250-MHz repetition rate, all-optical switching with a contrast ratio of 23 dB has been achieved using an in-fiber input power < 14 dBm (100 pJ/pulse). The switch speed depends on the carrier sweep-out time, which can be reduced to the 10 ps range by either applying a reverse bias or by introduction of carrier recombination centers in the active layer.