982 resultados para cosmic dust


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Beginning in 1974, a limited effort to collect extraterrestrial dust samples from the stratosphere using impactors mounted on NASA U-2 aircraft was initiated at NASA Ames Research Center (1). Subsequent studies (e.g. 1-9) have clearly established an extraterrestrial origin for some of the material. Attrition of comets is considered to be one of the potential sources of extraterrestrial dust(1,5). Additionally, some of the particles appear to represent a type of primitive material not represented in meteorite collections. In order to provide a greater availability of these samples to the scientific community, NASA-Johnson Space Center (JSC) began in May of 1981 a program dedicated to the systematic collection and curation of cosmic dust for scientific investigation. Collections were made at 18 to 20 km altitude by means of collectors mounted under the wings of a WB57F. When the aircraft reaches operating altitude, the collector plates (impactors) are extended into the ambient airstream with the collection surface normal to the airflow. To prevent particles from bouncing off the surface, the impactors are coated with a film of high viscosity silicone oil. The impactors are sealed in canisters to minimize contamination when not collecting.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Particle collections from the stratosphere via either the JSC Curatorial Program or the U2 Program (NASA Ames) occur between 16km and 19km altitude and are usually part of ongoing experiments to measure parameters related to the aerosol layer. Fine-grained aerosols (<0.1µm) occur in the stratosphere up to 35km altitude and are concentrated between 15km and 25km altitude[1]. All interplanetary dust particles (IDP's) from these stratospheric collections must pass through this aerosol layer before reaching the collection altitude. The major compounds in this aerosol layer are sulfur rich particulates (<0.1µm) and gases and include H2S04, OCS, S02 and CS2 [2].In order to assess possible surface reactions of interplanetary dust particles (IDP's) with ambient aerosols in the stratosphere, we have initiated a Surface Auger Microprobe (SAM) and electron microscope study of selected particles from the JSC Cosmic Dust Collection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In order to describe the total mineralogical diversity within primitive extraterrestrial materials, individual interplanetary dust particles (IDPs) collected from the stratosphere as part of the JSC Cosmic Dust Curatorial Program were analyzed using a var ...

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Analytical electron microscopy on individual grains from a portion of a chondritic porous interplanetary dust particle (aggregate W7029C1 from the NASA Johnson Space Center Cosmic Dust Collection) shows that layer silicates compose 50 percent of the silicate fraction examined. These layer silicates can be classified into two distinct crystallochemical groups: (1) fine-grained, polycrystalline smectite minerals; and (2) well-ordered, single crystals of kaolinite and Mg-poor talc. The layer silicates in this portion of sample W7029(asterisk)A are dissimilar to those described in other chondritic porous aggregates. The predominant layer silicate assemblage in W7029(asterisk)A indicates that heating of the aggregate during atmospheric entry was brief and probably to a temperature less than 300C. Comparison with terrestrial phyllosilicate occurrences suggests that some layer silicates in aggregate W7029(asterisk)A may have been formed by alteratiton from preexisting silicate minerals at low temperatures (less than 25C) after aggregate formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Greater than 750 individual particles have now been selected from collection flags housed in the JSC Cosmic Dust Curatorial Facility and most have been documented in the Cosmic Dust Catalogs [1]. As increasing numbers of particles are placed in Cosmic Dust Collections, and a greater diversity of particles are introduced to the stratosphere through natural and man-made processes (e.g. decaying orbits of space debris [2]), there is an even greater need for a classification scheme to encompass all stratospheric particles rather than only extraterrestrial particles. The fundamental requirements for a suitable classification scheme have been outlined in earlier communications [3,4]. A quantitative survey of particles on collection flag W7017 indicates that there is some bias in the number of samples selected within a given category for the Cosmic Dust Catalog [5]. However, the sample diversity within this selection is still appropriate for the development of a reliable classification scheme. In this paper, we extend the earlier works on stratospheric particle classification to include particles collected during the period May 1981 to November 1983.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The degree of diversity or similarity detected in comets depends primarily on the lifetimes of the individual cometary nuclei at the time of analysis. It is inherent in our understanding of cometary orbital dynamics and the seminal model of comet origins that cometary evolution is the natural order of events in our Solar System. Thus, predictions of cometary behaviour in terms of bulk physical, mineralogical or chemical parameters should contain an appreciation of temporal variation(s). Previously, Rietmeijer and Mackinnon [1987] developed mineralogical bases for the chemical evolution of cometary nuclei primarily with regard to the predominantly silicate fraction of comet nuclei. We suggested that alteration of solids in cometary nuclei should be expected and that indications of likely reactants and products can be derived from judicious comparison with terrestrial diagenetic environments which include hydrocryogenic and low-temperature aqueous alterations. In a further development of this concept, Rietmeijer [1988] provides indirect evidence for the formation of sulfides and oxides in comet nuclei. Furthermore, Rietmeijer [1988] noted that timescales for hydrocryogenic and low-temperature reactions involving liquid water are probably adequate for relatively mature comets, e.g. P/comet Halley. In this paper, we will address the evolution of comet nuclei physical parameters such as solid particle grain size, porosity and density. In natural environments, chemical evolution (e.g. mineral reactions) is often accompanied by changes in physical properties. These concurrent changes are well-documented in the terrestrial geological literature, especially in studies of sediment diagenesis and we suggest that similar basic principles apply within the upper few meters of active comet nuclei. The database for prediction of comet nuclei physical parameters is, in principle, the same as used for the proposition of chemical evolution. We use detailed mineralogical studies of chondritic interplanetary dust particles (IDPS) as a guide to the likely constitution of mature comets traversing the inner Solar System. While there is, as yet, no direct proof that a specific sub-group or type of chondritic IDP is derived from a specific comet, it is clear that these particles are extraterrestrial in origin and that a certain portion of the interplanetary flux received by the Earth is cometary in origin. Two chondritic porous (CP) IDPS, sample numbers W701OA2 and W7029CI, from the Johnson Space Center Cosmic Dust Collection have been selected for this study of putative cometary physical parameters. This particular type of particle is considered a likely candidate for a cometary origin on the basis of mineralogy, bulk composition and morphology. While many IDPs have been subjected to intensive study over the past decade, we can develop a physical parameter model on only these two CP IDPs because few others have been studied in sufficient detail.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present mid-infrared (MIR) spectroscopy of a Type II-plateau supernova, SN 2004dj, obtained with the Spitzer Space Telescope, spanning 106--1393d after explosion. MIR photometry plus optical/near-IR observations are also reported. An early-time MIR excess is attributed to emission from non-silicate dust formed within a cool dense shell (CDS). Most of the CDS dust condensed between 50d and 165d, reaching a mass of $0.3x^(-5)Msun. Throughout the observations much of the longer wavelength (>10microns) part of the continuum is explained as an IR echo from interstellar dust. The MIR excess strengthened at later times. We show that this was due to thermal emission from warm, non-silicate dust formed in the ejecta. Using optical/near-IR line-profiles and the MIR continua, we show that the dust was distributed as a disk whose radius appeared to be slowly shrinking. The disk radius may correspond to a grain destruction zone caused by a reverse shock which also heated the dust. The dust-disk lay nearly face-on, had high opacities in the optical/near-IR regions, but remained optically thin in the MIR over much of the period studied. Assuming a uniform dust density, the ejecta dust mass by 996d was 0.5+/-0.1 x 10^(-4)Msun, and exceeded 10^(-4)Msun by 1393d. For a dust density rising toward the center the limit is higher. Nevertheless, this study suggests that the amount of freshly-synthesized dust in the SN 2004dj ejecta is consistent with that found from previous studies, and adds further weight to the claim that such events could not have been major contributors to the cosmic dust budget.