978 resultados para cortical thickness (brain)
Resumo:
Background: Cortical gray matter thinning occurs during childhood due to pruning of inefficient synaptic connections and an increase in myelination. Preterms show alterations in brain structure, with prolonged maturation of the frontal lobes, smaller cortical volumes and reduced white matter volume. These findings give rise to the question if there is a differential influence of age on cortical thinning in preterms compared to controls. Aims: To investigate the relationship between age and cortical thickness in preterms when compared to controls. Study design and outcome measures: The automated surface reconstruction software FreeSurfer was applied to obtain measurements of cortical thickness based on T1-weighted MRI images. Subjects: Forty-one preterms (< 32 weeks gestational age and/or < 1500 gram birth weight) and 30 controls were included in the study (7-12 years). Results: Cortical thickness was lower in bilateral frontal and left parietal regions and higher in left temporal gyri in preterms compared to controls. However, these differences depended on age. In preterms, age correlated negatively with cortical thickness in right frontal, parietal and inferior temporal regions. Accordingly, cortical thickness was higher in young compared to old preterms in bilateral frontal, parietal and temporal regions. In controls, age was not associated with cortical thickness. Conclusion: In preterms, cortical thinning still seems to occur between the age of 7 and 12 years, mainly in frontal and parietal areas whereas in controls, a substantial part of cortical thinning appears to be completed before they reach the age of 7 years. These data indicate slower cortical thinning in preterms than in controls.
Resumo:
OBJECTIVE To examine cortical thickness and volumetric changes in the cortex of patients with polymicrogyria, using an automated image analysis algorithm. METHODS Cortical thickness of patients with polymicrogyria was measured using magnetic resonance imaging (MRI) cortical surface-based analysis and compared with age-and sex-matched healthy subjects. We studied 3 patients with disorder of cortical development (DCD), classified as polymicrogyria, and 15 controls. Two experienced neuroradiologists performed a conventional visual assessment of the MRIs. The same data were analyzed using an automated algorithm for tissue segmentation and classification. Group and individual average maps of cortical thickness differences were produced by cortical surface-based statistical analysis. RESULTS Patients with polymicrogyria showed increased thickness of the cortex in the same areas identified as abnormal by radiologists. We also identified a reduction in the volume and thickness of cortex within additional areas of apparently normal cortex relative to controls. CONCLUSIONS Our findings indicate that there may be regions of reduced cortical thickness, which appear normal from radiological analysis, in the cortex of patients with polymicrogyria. This finding suggests that alterations in neuronal migration may have an impact in the cortical formation of the cortical areas that are visually normal. These areas are associated or occur concurrently with polymicrogyria.
Resumo:
Objective: To determine the presence of linear relationship between renal cortical thickness, bipolar length, and parenchymal thickness in chronic kidney disease patients presenting with different estimated glomerular filtration rates (GFRs) and to assess the reproducibility of these measurements using ultrasonography. Materials and Methods: Ultrasonography was performed in 54 chronic renal failure patients. The scans were performed by two independent and blinded radiologists. The estimated GFR was calculated using the Cockcroft-Gault equation. Interobserver agreement was calculated and a linear correlation coefficient (r) was determined in order to establish the relationship between the different renal measurements and estimated GFR. Results: The correlation between GFR and measurements of renal cortical thickness, bipolar length, and parenchymal thickness was, respectively, moderate (r = 0.478; p < 0.001), poor (r = 0.380; p = 0.004), and poor (r = 0.277; p = 0.116). The interobserver agreement was considered excellent (0.754) for measurements of cortical thickness and bipolar length (0.833), and satisfactory for parenchymal thickness (0.523). Conclusion: The interobserver reproducibility for renal measurements obtained was good. A moderate correlation was observed between estimated GFR and cortical thickness, but bipolar length and parenchymal thickness were poorly correlated.
Resumo:
Recent evidence suggests that immobilization of the upper limb for 2–3 weeks induces changes in cortical thickness as well as motor performance. In constraint induced (CI) therapy, one of the most effective interventions for hemiplegia, the non-paretic arm is constrained to enforce the use of the paretic arm in the home setting. With the present study we aimed to explore whether non-paretic arm immobilization in CI therapy induces structural changes in the non-lesioned hemisphere, and how these changes are related to treatment benefit. 31 patients with chronic hemiparesis participated in CI therapy with (N = 14) and without (N = 17) constraint. Motor ability scores were acquired before and after treatment. Diffusion tensor imaging (DTI) data was obtained prior to treatment. Cortical thickness was measured with the Freesurfer software. In both groups cortical thickness in the contralesional primary somatosensory cortex increased and motor function improved with the intervention. However the cortical thickness change was not associated with the magnitude of motor function improvement. Moreover, the treatment effect and the cortical thickness change were not significantly different between the constraint and the non-constraint groups. There was no correlation between fractional anisotropy changes in the non-lesioned hemisphere and treatment outcome. CI therapy induced cortical thickness changes in contralesional sensorimotor regions, but this effect does not appear to be driven by the immobilization of the non-paretic arm, as indicated by the absence of differences between the constraint and the non-constraint groups. Our data does not suggest that the arm immobilization used in CI therapy is associated with noticeable cortical thinning.
Resumo:
Introduction The objective of this study was to assess three-dimensional bone geometry and density at the epiphysis and shaft of the third meta-carpal bone of rheumatoid arthritis (RA) patients in comparison to healthy controls with the novel method of peripheral quantitative computed tomography (pQCT). Methods PQCT scans were performed in 50 female RA patients and 100 healthy female controls at the distal epiphyses and shafts of the third metacarpal bone, the radius and the tibia. Reproducibility was determined by coefficient of varia-tion. Bone densitometric and geometric parameters were compared between the two groups and correlated to disease characteristics. Results Reproducibility of different pQCT parameters was between 0.7% and 2.5%. RA patients had 12% to 19% lower trabecular bone mineral density (BMD) (P ≤ 0.001) at the distal epiphyses of radius, tibia and metacarpal bone. At the shafts of these bones RA patients had 7% to 16% thinner cortices (P ≤ 0.03). Total cross-sectional area (CSA) at the metacarpal bone shaft of pa-tients was larger (between 5% and 7%, P < 0.02), and relative cortical area was reduced by 13%. Erosiveness by Ratingen score correlated negatively with tra-becular and total BMD at the epiphyses and shaft cortical thickness of all measured bones (P < 0.04). Conclusions Reduced trabecular BMD and thinner cortices at peripheral bones, and a greater bone shaft diameter at the metacarpal bone suggest RA spe-cific bone alterations. The proposed pQCT protocol is reliable and allows measuring juxta-articular trabecular BMD and shaft geometry at the metacarpal bone.
Resumo:
Investigations of gray matter changes in relation with auditory verbal hallucinations (AVH) have reported conflicting results. Assuming that alterations in gray matter might be related to certain symptoms in schizophrenia this study aimed to investigate changes in cortical thickness specific to AVH. It was hypothesized that schizophrenia patients suffering from persistent AVH would show significant differences in cortical thickness in regions involved in language-production and perception when compared to schizophrenia patients which had never experienced any hallucinations.
Resumo:
In the present work we analyzed the effect of the chronic administration of risperidone (2mg/kg over 65 days) on behavioural, morphological and molecular aspects in an experimental model of schizophrenia obtained by bilateral injection of ibotenic acid into the ventral hippocampus of new-born rats. Our results show that during their adult lives the animals with hippocampal lesions exhibit different alterations, mainly at behavioural level and in the gene expression of dopamine D2 and 5-HT2A receptors. However, at morphological level the study performed on the prefrontal cortex did not reveal any alterations in either the thickness or the number of cells immunoreactive for c-Fos, GFAP, CBP or PV. Overall, risperidone administration elicited a trend towards the recovery of the values previously altered by the hippocampal lesion, approaching the values seen in the animals without lesions. It may be concluded that the administration of risperidone in the schizophrenia model employed helps to improve the altered functions, with no significant negative effects. © 2013.
Resumo:
This paper describes algorithms that can identify patterns of brain structure and function associated with Alzheimer's disease, schizophrenia, normal aging, and abnormal brain development based on imaging data collected in large human populations. Extraordinary information can be discovered with these techniques: dynamic brain maps reveal how the brain grows in childhood, how it changes in disease, and how it responds to medication. Genetic brain maps can reveal genetic influences on brain structure, shedding light on the nature-nurture debate, and the mechanisms underlying inherited neurobehavioral disorders. Recently, we created time-lapse movies of brain structure for a variety of diseases. These identify complex, shifting patterns of brain structural deficits, revealing where, and at what rate, the path of brain deterioration in illness deviates from normal. Statistical criteria can then identify situations in which these changes are abnormally accelerated, or when medication or other interventions slow them. In this paper, we focus on describing our approaches to map structural changes in the cortex. These methods have already been used to reveal the profile of brain anomalies in studies of dementia, epilepsy, depression, childhood and adult-onset schizophrenia, bipolar disorder, attention-deficit/ hyperactivity disorder, fetal alcohol syndrome, Tourette syndrome, Williams syndrome, and in methamphetamine abusers. Specifically, we describe an image analysis pipeline known as cortical pattern matching that helps compare and pool cortical data over time and across subjects. Statistics are then defined to identify brain structural differences between groups, including localized alterations in cortical thickness, gray matter density (GMD), and asymmetries in cortical organization. Subtle features, not seen in individual brain scans, often emerge when population-based brain data are averaged in this way. Illustrative examples are presented to show the profound effects of development and various diseases on the human cortex. Dynamically spreading waves of gray matter loss are tracked in dementia and schizophrenia, and these sequences are related to normally occurring changes in healthy subjects of various ages. (C) 2004 Published by Elsevier Inc.
Resumo:
The neuro-anatomical substrates of major depressive disorder (MDD) are still not well understood, despite many neuroimaging studies over the past few decades. Here we present the largest ever worldwide study by the ENIGMA (Enhancing Neuro Imaging Genetics through Meta-Analysis) Major Depressive Disorder Working Group on cortical structural alterations in MDD. Structural T1-weighted brain magnetic resonance imaging (MRI) scans from 2148 MDD patients and 7957 healthy controls were analysed with harmonized protocols at 20 sites around the world. To detect consistent effects of MDD and its modulators on cortical thickness and surface area estimates derived from MRI, statistical effects from sites were meta-analysed separately for adults and adolescents. Adults with MDD had thinner cortical gray matter than controls in the orbitofrontal cortex (OFC), anterior and posterior cingulate, insula and temporal lobes (Cohen’s d effect sizes: −0.10 to −0.14). These effects were most pronounced in first episode and adult-onset patients (>21 years). Compared to matched controls, adolescents with MDD had lower total surface area (but no differences in cortical thickness) and regional reductions in frontal regions (medial OFC and superior frontal gyrus) and primary and higher-order visual, somatosensory and motor areas (d: −0.26 to −0.57). The strongest effects were found in recurrent adolescent patients. This highly powered global effort to identify consistent brain abnormalities showed widespread cortical alterations in MDD patients as compared to controls and suggests that MDD may impact brain structure in a highly dynamic way, with different patterns of alterations at different stages of life.
Resumo:
Here, we examine morphological changes in cortical thickness of patients with Alzheimer`s disease (AD) using image analysis algorithms for brain structure segmentation and study automatic classification of AD patients using cortical and volumetric data. Cortical thickness of AD patients (n = 14) was measured using MRI cortical surface-based analysis and compared with healthy subjects (n = 20). Data was analyzed using an automated algorithm for tissue segmentation and classification. A Support Vector Machine (SVM) was applied over the volumetric measurements of subcortical and cortical structures to separate AD patients from controls. The group analysis showed cortical thickness reduction in the superior temporal lobe, parahippocampal gyrus, and enthorhinal cortex in both hemispheres. We also found cortical thinning in the isthmus of cingulate gyrus and middle temporal gyrus at the right hemisphere, as well as a reduction of the cortical mantle in areas previously shown to be associated with AD. We also confirmed that automatic classification algorithms (SVM) could be helpful to distinguish AD patients from healthy controls. Moreover, the same areas implicated in the pathogenesis of AD were the main parameters driving the classification algorithm. While the patient sample used in this study was relatively small, we expect that using a database of regional volumes derived from MRI scans of a large number of subjects will increase the SVM power of AD patient identification.
Resumo:
Alzheimer Disease (AD) is characterized by progressive cognitive decline and dementia. Earlier diagnosis and classification of different stages of the disease are currently the main challenges and can be assessed by neuroimaging. With this work we aim to evaluate the quality of brain regions and neuroimaging metrics as biomarkers of AD. Multimodal Imaging Brain Connectivity Analysis (MIBCA) toolbox functionalities were used to study AD by T1weighted, Diffusion Tensor Imaging and 18FAV45 PET, with data obtained from the AD Neuroimaging Initiative database, specifically 12 healthy controls (CTRL) and 33 patients with early mild cognitive impairment (EMCI), late MCI (LMCI) and AD (11 patients/group). The metrics evaluated were gray-matter volume (GMV), cortical thickness (CThk), mean diffusivity (MD), fractional anisotropy (FA), fiber count (FiberConn), node degree (Deg), cluster coefficient (ClusC) and relative standard-uptake-values (rSUV). Receiver Operating Characteristic (ROC) curves were used to evaluate and compare the diagnostic accuracy of the most significant metrics and brain regions and expressed as area under the curve (AUC). Comparisons were performed between groups. The RH-Accumbens/Deg demonstrated the highest AUC when differentiating between CTRLEMCI (82%), whether rSUV presented it in several brain regions when distinguishing CTRL-LMCI (99%). Regarding CTRL-AD, highest AUC were found with LH-STG/FiberConn and RH-FP/FiberConn (~100%). A larger number of neuroimaging metrics related with cortical atrophy with AUC>70% was found in CTRL-AD in both hemispheres, while in earlier stages, cortical metrics showed in more confined areas of the temporal region and mainly in LH, indicating an increasing of the spread of cortical atrophy that is characteristic of disease progression. In CTRL-EMCI several brain regions and neuroimaging metrics presented AUC>70% with a worst result in later stages suggesting these indicators as biomarkers for an earlier stage of MCI, although further research is necessary.
Resumo:
Tourette syndrome is a childhood-onset neuropsychiatric disorder with a high prevalence of attention deficit hyperactivity and obsessive-compulsive disorder co-morbidities. Structural changes have been found in frontal cortex and striatum in children and adolescents. A limited number of morphometric studies in Tourette syndrome persisting into adulthood suggest ongoing structural alterations affecting frontostriatal circuits. Using cortical thickness estimation and voxel-based analysis of T1- and diffusion-weighted structural magnetic resonance images, we examined 40 adults with Tourette syndrome in comparison with 40 age- and gender-matched healthy controls. Patients with Tourette syndrome showed relative grey matter volume reduction in orbitofrontal, anterior cingulate and ventrolateral prefrontal cortices bilaterally. Cortical thinning extended into the limbic mesial temporal lobe. The grey matter changes were modulated additionally by the presence of co-morbidities and symptom severity. Prefrontal cortical thickness reduction correlated negatively with tic severity, while volume increase in primary somatosensory cortex depended on the intensity of premonitory sensations. Orbitofrontal cortex volume changes were further associated with abnormal water diffusivity within grey matter. White matter analysis revealed changes in fibre coherence in patients with Tourette syndrome within anterior parts of the corpus callosum. The severity of motor tics and premonitory urges had an impact on the integrity of tracts corresponding to cortico-cortical and cortico-subcortical connections. Our results provide empirical support for a patho-aetiological model of Tourette syndrome based on developmental abnormalities, with perturbation of compensatory systems marking persistence of symptoms into adulthood. We interpret the symptom severity related grey matter volume increase in distinct functional brain areas as evidence of ongoing structural plasticity. The convergence of evidence from volume and water diffusivity imaging strengthens the validity of our findings and attests to the value of a novel multimodal combination of volume and cortical thickness estimations that provides unique and complementary information by exploiting their differential sensitivity to structural change.
Resumo:
Introduction: Tourette syndrome (TS) implicates the disinhibition of the cortico-striatal-thalamic-cortical circuitry (CSTC). Previous studies used a volumetric approach to investigate this circuitry with inconsistent findings. Cortical thickness may represent a more reliable measure than volume due to the low variability in the cytoarchitectural structure of the grey matter. Methods: 66 magnetic resonance imaging scans were acquired from 34 TS (age range 10-25, mean 17.19±4.1) and 32 normal controls (NC) (age range 10-20, mean 16.33±3.56). Brain morphology was assessed using the fully automated Civet pipeline at the Montreal Neurological Institute. Results: We report (1) significant cortical thinning in the fronto-parietal and somatosensory-motor cortices in TS relative to NC (p<0.05); (2) TS boys showed thinner cortex relative to TS girls in the fronto-parietal cortical regions (p<0.05); (3) significant decrease in the fronto-parietal mean cortical thickness in TS with age relative to NC and in the pre-central cortex in TS boys relative to TS girls; (4) significant negative correlations between tic severity and the somatosensory-motor cortical thickness. Conclusions: TS revealed important thinning in brain regions particularly involved in the somatosensory/motor bodily representations which may play an important role in tics. Our findings are in agreement with Leckman et al. (1991) hypothesis stating that facial tics would be associated with dysfunction in an orofacial subset of the motor circuit, eye blinking with the occulo-motor circuit, whereas lack of inhibition to a dysfunction in the prefrontal cortex. Gender and age differences may reflect differential etiological factors, which have significant clinical relevance in TS and should be considered in developing and using diagnostic and therapeutic interventions.
Resumo:
22q11.2 deletion syndrome (22q11DS) is associated with an increased susceptibility to develop schizophrenia. Despite a large body of literature documenting abnormal brain structure in 22q11DS, cerebral changes associated with brain maturation in 22q11DS remained largely unexplored. To map cortical maturation from childhood to adulthood in 22q11.2 deletion syndrome, we used cerebral MRI from 59 patients with 22q11DS, aged 6 to 40, and 80 typically developing controls; three year follow-up assessments were also available for 32 patients and 31 matched controls. Cross-sectional cortical thickness trajectories during childhood and adolescence were approximated in age bins. Repeated-measures were also conducted with the longitudinal data. Within the group of patients with 22q11DS, exploratory measures of cortical thickness differences related to COMT polymorphism, IQ, and schizophrenia were also conducted. We observed deviant trajectories of cortical thickness changes with age in patients with 22q11DS. In affected preadolescents, larger prefrontal thickness was observed compared to age-matched controls. Afterward, we observed greater cortical loss in 22q11DS with a convergence of cortical thickness values by the end of adolescence. No compelling evidence for an effect of COMT polymorphism on cortical maturation was observed. Within 22q11DS, significant differences in cortical thickness were related to cognitive level in children and adolescents, and to schizophrenia in adults. Deviant trajectories of cortical thickness from childhood to adulthood provide strong in vivo cues for a defect in the programmed synaptic elimination, which in turn may explain the susceptibility of patients with 22q11DS to develop psychosis.
Resumo:
This article has been written as a comment to Dr Thomas and Dr Baker's article "Teaching an adult brain new tricks: A critical review of evidence for training-dependent structural plasticity in humans". We deliberately expand on the key question about the biological substrates underlying use-dependent brain plasticity rather than reiterating the authors' main points of criticism already addressed in more general way by previous publications in the field. The focus here is on the following main issues: i) controversial brain plasticity findings in voxel-based morphometry studies are partially due to the strong dependency of the widely used T1-weighted imaging protocol on varying magnetic resonance contrast contributions; ii) novel concepts in statistical analysis allow one to directly infer topological specificity of structural brain changes associated with plasticity. We conclude that iii) voxel-based quantification of relaxometry derived parameter maps could provide a new perspective on use-dependent plasticity by characterisation of brain tissue property changes beyond the estimation of volume and cortical thickness changes. In the relevant sections we respond to the concerns raised by Dr Thomas and Dr Baker from the perspective of the proposed data acquisition and analysis strategy.