999 resultados para corrosion activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper discusses the importance of integrated sensing systems comprising techniques that give different types of data from a structure exposed to the marine environment so that its service life could reliably be predicted. For this purpose, a novel sensor combination was designed and installed in concrete panels which were exposed to Hangzhou Bay Bridge in China. The integrated sensor probe was used to monitor the cover concrete as well as the reinforcement. The sensor probes were connected to a monitoring station, which enabled access and control of the data remotely from Belfast, UK. The initial data obtained from the monitoring station gives interesting information on the early age properties of concrete and distinct variations in these properties with different types of concrete. This paper also reports the variation in electrical properties of different concrete samples and environmental data in response to the marine exposure condition at Hangzhou bay bridge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Concrete structures in marine environments are subjected to cyclic wetting and drying, corrosion of reinforcement due to chloride ingress and biological deterioration. In order to assess the quality of concrete and predict the corrosion activity of reinforcing steel in concrete in this environment, it is essential to monitor the concrete continuously right from the construction phase to the end of service life of the structure. In this paper a novel combination of sensor techniques which are integrated in a sensor probe is used to monitor the quality of cover concrete and corrosion of the reinforcement. The integrated sensor probe was embedded in different concrete samples exposed to an aggressive marine environment at the Hangzhou Bay Bridge in China. The sensor probes were connected to a monitoring station, which enabled the access and control of the data remotely from Belfast, UK. The initial data obtained from the monitoring station reflected the early age properties of the concretes and distinct variations in these properties were observed with different concrete types.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies have established that some of the wear damage seen on cast CoCrMo joint surface is caused by entrained third-body hard particles. In this study, wet-cell micro-indentation and nano-scratch tests have been carried out with the direct aim of simulating wear damage induced by single abrasive particles entrained between the surfaces of cast CoCrMo hip implants. In situ electrochemical current noise measurements were uniquely performed to detect and study the wear-induced corrosion as well as the repassivation kinetics under the micro-/nano-scale tribological process. A mathematical model has been explored for the CoCrMo repassivation kinetics after surface oxide film rupture. Greater insights into the nature of the CoCrMo micro-/nano-scale wear-corrosion mechanisms and deformation processes are determined, including the identification of slip band formation, matrix/carbide deformation, nanocrystalline structure formation and strain-induced phase transformation. The electrochemical current noise provides evidence of instantaneous transient corrosion activity at the wearing surface resulting from partial oxide rupturing and stripping, concurrent with the indent/scratch.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new approach is presented for the analysis of galvanostatically induced transients allowing for the rapid evaluation of the corrosion activity of steel in concrete. This method of analysis is based on the iterative fitting of a non-exponential model based on a modified KWW (Kohlrausch–Williams–Watt) formalism. This analysis yields values for the parameters related to corrosion such as the concrete resistance, polarisation resistance, interfacial capacitance and β, the non-ideality exponent.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interfacial properties of the steel–concrete system are examined via a new approach for evaluation of galvanostatic pulse data. This methodology allows for rapid determination of the corrosion activity of steel, and readily yields values for parameters related to corrosion such as the polarisation resistance and interfacial capacitance. The method of analysis is based on the iterative fitting of a non-exponential model based on a modified Kohlrausch–Williams–Watt (KWW) formalism. The transient behaviour of steel in concrete is non-exponential in its form and, when analysed this way, an exponent β can be determined characterising the exponential non-ideality of the transient. This non-ideality parameter is found to differ significantly for actively corroding and passive specimens, thereby serving as a useful index to the level of corrosion being experienced. Furthermore, the investigation of the interfacial characteristics of the system, previously unobtainable in a reproducible manner via other electrochemical methods, reveal information regarding the kinetic factors governing corrosion of steel in concrete.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A number of factors relating to various methods of repair for chloride initiated corrosion damage of reinforced concrete have been studied. A novel methodology has been developed to facilitate the measurement of macro and micro-cell corrosion rates for steel electrodes embedded in mortar prisms containing a chloride gradient. The galvanic bar specimen comprised electrically isolatable segmental mild steel electrodes and was constructed such that macro-cell corrosion currents were determinable for a number of electrode combinations. From this, the conditions giving rise to an incipient anode were established. The influence of several reinforcement and substrate primer systems upon macro-cell corrosion, arising from an incipient anode, within a patch repair have been investigated. Measurements of electrochemical noise were made in order to investigate the suitability of the technique as an on-site means of assessing corrosion activity within chloride contaminated reinforced concrete. For this purpose the standard deviation of potential noise was compared to macro-cell galvanic current data and micro-cell corrosion intensity determined by linear polarisation. Hydroxyl ion pore solution analyses were carried out on mortar taken from cathodically protected specimens. These specimens, containing sodium chloride, were cathodically protected over a range of polarisation potentials. Measurement of the hydroxyl ion concentrations were made in order to examine the possibility of alkali-silica reactions initiated by cathodic protection of reinfored concrete. A range of mortars containing a variety of generic type additives were examined in order to establish their resistances to chloride ion diffusion. The effect of surfactant addition rate was investigated within a cement paste containing various dosages of naphthalene sulphonate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical formation of nanostructured materials is generally achieved by reduction of a metal salt onto a substrate that does not influence the composition of the deposit. In this work we report that Ag, Au and Pd electrodeposited onto Cu under conditions where galvanic replacement is not viable and hydrogen gas is evolved results in the formation of nanostructured surfaces that unexpectedly incorporate a high concentration of Cu in the final material. Under cathodic polarization conditions the electrodissolution/corrosion of Cu occurs which provides a source of ionic copper that is reduced at the surface-electrolyte interface. The nanostructured Cu/M (M = Ag, Au and Pd) surfaces are investigated for their catalytic activity for the reduction of 4 nitrophenol by NaBH4 where Cu/Ag was found to be extremely active. This work indicates that a substrate electrode can be utilized in an interesting manner t make bimetallic nanostructures with enhanced catalytic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Titanium carbide (TiC) possesses fascinating properties like high electrical conductivity and high mechanical strength coupled with high corrosion resistance and stability in acidic and alkaline environments. The present study demonstrates the tunability of mechanistic aspects of oxygen reduction reaction (ORR) using TiC nanostructures. One dimensional TiC nanostructures (TiC-NW) have been synthesized using a simple, hydrothermal method and used as a catalyst for ORR. Shape dependent electroactivity is demonstrated by comparing the activity of TiC-NW with its bulk counterparts. Comparative studies reveal higher ORR activities in the case of 1D TiC-NW involving similar to 4 electrons showing efficient reduction of molecular oxygen. Excellent stability and high methanol tolerance with good selectivity for ORR is reported.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some presently used anti-fouling materials contain metals and other compounds, which are toxic in the environment. Coating products are not always stable, and there is a resulting pollution hazard. In particular if surfaces are poorly prepared and manufactures' instructions are not closely followed the application of anti-fouling substances becomes pointless and dangerous. In addition the salinity, constant biological activity and suspended particles make seawater a highly corrosive material in its own right.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research on corrosion of steel structures in various marine environments is essential to assure the safety of structures and can effectively prolong their service life. In order to provide data for anticorrosion design of oil exploitation structures in the Bohai Bay, the corrosion behaviour and properties of steel in beach soil, using typical steel samples (Q235A carbon steel and API 5Lx52 pipeline steel) buried 0.5, 1.0 and 1.5 m deep under typical beach soils in Tanggu, Yangjiaogou, Xingcheng, Yingkou and Chengdao for 1-2 years were studied. The carbon steel and pipeline steel were both corroded severely in the beach soil, with the form of corrosion being mainly uniform with some localised attack (pitting corrosion). The corrosion rate of the carbon steel was up to 0.16 mm/year with a maximum penetration depth of 0.76 mm and that of the pipeline steel was up to 0.14 mm/year, with a maximum penetration depth of 0.53 mm. Compared with carbon steel, the pipeline steel generally had better corrosion resistance in most test beach soils. The corrosion rates and the maximum corrosion depths of carbon steel and pipeline steel were in the order: Tanggu>Xingcheng>Chengdao>Yingkou>Yangjiaogou with corrosion altering with depth of burial. The corrosion of steel in the beach soil involves a mixed mechanism with different degrees of soil aeration and microbial activity present. It is concluded that long term in situ plate laying experiments must be carried out to obtain data on steel corrosion in this beach soil environment so that the effective protection measures can be implemented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The in-situ study of steel corrosion in sea bottom sediment (SBS) was carried out by Transplanting Burying Plate method (TBP method). It was found that the corrosion rate of steel in the sea bottom sediment with sulfate reducing bacteria (SRB) could be as high as ten times of that in sea bottom sediment without SRB. The experiments in simulated sea bottom sediments with different SRB contents by artificial culturing showed that the electrochemical behavior of steel in the sea bottom sediment with SRB was different from that without SRB. SRB altered the polarization behavior of steel significantly. The environment was acidified due to the activity of SRB and the corrosion of steel was accelerated. The corrosion of carbon steel in sea bottom sediment is anaerobic corrosion, and the main factor is anaerobe. There are SRB commonly in SBS, and the amount of SRB decreases along with the depth of sediment. Because of the asymmetry and variation of sea bottom sediment, the most dangerous corrosion breakage of steel in SBS is local corrosion caused by SRB. So the main countermeasure of corrosion protection of sea bottom steel facilities should be controlling of the corrosion caused by anaerobe.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hypocotyls from etiolated cucumber (Cucumis sativus L.) seedlings were gently abraded at their epidermal surface and cut segments were conditioned to develop competence for H2O2 elicitation. Alkaline hydrolysates of cutin from cucumber, tomato, and apple elicited H2O2 in such conditioned segments. The most active constituent of cucumber cutin was identified as dodecan-1-ol, a novel cutin monomer capable of forming hydrophobic terminal chains. Additionally, the cutin hydrolysates enhanced the activity of a fungal H2O2 elicitor, similar to cucumber surface wax, which contained newly identified alkan-1,3-diols. The specificity of elicitor and enhancement activity was further elaborated using some pure model compounds. Certain saturated hydroxy fatty acids were potent H2O2 elicitors as well as enhancers. Some unsaturated epoxy and hydroxy fatty acids were also excellent H2O2 elicitors but inhibited the fungal elicitor activity. Short-chain alkanols exhibited good elicitor and enhancer activity, whereas longer-chain alkan-1-ols were barely active. The enhancement effect was also observed for H2O2 elicitation by ergosterol and chitosan. The physiological significance of these observations might be that once the cuticle is degraded by fungal cutinase, the cutin monomers may act as H2O2 elicitors. Corrosion of cutin may also bring surface wax constituents in contact with protoplasts and enhance elicitation.