906 resultados para coronary restenosis
Resumo:
OBJECTIVE: To compare circulating plasma levels of immunoinflammatory markers in patients with known de novo coronary artery disease and patients with postangioplasty restenosis. METHODS: Using enzymatic immunoabsorbent assay, we measured plasma levels of soluble interleukin-2 receptosr, tumor necrosis factor alpha, and soluble tumor necrosis alpha receptors I and II in 11 patients with restenosis postcoronary angioplasty (restenosis group), in 10 patients with primary atherosclerosis (de novo group) who were referred for coronary angiography because of stable or unstable angina, and in 9 healthy volunteers (control group). Levels of soluble interleukin-2 receptors were significantly higher in the de novo group compared with that in the restenosis and control groups. Levels were also higher in the restenosis group compared with that in the control group. Plasma levels of tumor necrosis alpha and receptor levels were significantly higher in the de novo group compared to with that in the restenosis and control groups, but levels in the restenosis group were not different from that in the controls. CONCLUSION: Coronary artery disease, either primary or secondary to restenosis, is associated with significant immunoinflammatory activity, which can be assessed by examining the extent of circulating plasma levels of inflammatory markers. Moreover, patients with de novo lesions appear to have increased inflammatory activity compared with patients with restenosis.
Resumo:
Background: Clinical in-stent restenosis (CISR) is the main limitation of coronary angioplasty with stent implantation. Objective: Describe the clinical and angiographic characteristics of CISR and the outcomes over a minimum follow-up of 12 months after its diagnosis and treatment. Methods: We analyzed in 110 consecutive patients with CISR the clinical presentation, angiographic characteristics, treatment and combined primary outcomes (cardiovascular death, nonfatal acute myocardial infarction [AMI]) and combined secondary (unstable angina with hospitalization, target vessel revascularization and target lesion revascularization) during a minimal follow-up of one year. Results: Mean age was 61 ± 11 years (68.2% males). Clinical presentations included acute coronary syndrome (ACS) in 62.7% and proliferative ISR in 34.5%. CISR was treated with implantation of drug-eluting stents (DES) in 36.4%, Bare Metal Stent (BMS) in 23.6%, myocardial revascularization surgery in 18.2%, balloon angioplasty in 15.5% and clinical treatment in 6.4%. During a median follow-up of 19.7 months, the primary outcome occurred in 18 patients, including 6 (5.5%) deaths and 13 (11.8%) AMI events. Twenty-four patients presented a secondary outcome. Predictors of the primary outcome were CISR with DES (HR = 4.36 [1.44–12.85]; p = 0.009) and clinical treatment for CISR (HR = 10.66 [2.53–44.87]; p = 0.001). Treatment of CISR with BMS (HR = 4.08 [1.75–9.48]; p = 0.001) and clinical therapy (HR = 6.29 [1.35–29.38]; p = 0.019) emerged as predictors of a secondary outcome. Conclusion: Patients with CISR present in most cases with ACS and with a high frequency of adverse events during a medium-term follow-up.
Resumo:
The objective of this study was to identify intravascular ultrasound (IVUS), angiographic and metabolic parameters related to restenosis in patients with dysglycemia. Seventy consecutive patients (77 lesions) selected according to inclusion and exclusion criteria were evaluated by the oral glucose tolerance test and the determination of insulinemia after a successful percutaneous coronary intervention (PCI) with a bare-metal stent. The degree of insulin resistance was calculated by the homeostasis model assessment of insulin resistance (HOMA-IR). Six-month IVUS and angiogram follow-up were performed. Thirty-nine patients (55.7%) had dysglycemia. The restenosis rate in the dysglycemic group was 37.2 vs 23.5% in the euglycemic group (P = 0.299). The predictors of restenosis using bivariate analysis were reference vessel diameter (RVD): £2.93 mm (RR = 0.54; 95%CI = 0.05-0.78; P = 0.048), stent area (SA): <8.91 mm² (RR = 0.66; 95%CI = 0.24-0.85; P = 0.006), stent volume (SV): <119.75 mm³ (RR = 0.74; 95%CI = 0.38-0.89; P = 0.0005), HOMA-IR: >2.063 (RR = 0.44; 95%CI = 0.14-0.64; P = 0.027), and fasting plasma glucose (FPG): ≤108.8 mg/dL (RR = 0.53; 95%CI = 0.13-0.75; P = 0.046). SV was an independent predictor of restenosis by multivariable analysis. Dysglycemia is a common clinical condition in patients submitted to PCI. The degree of insulin resistance, FPG, RVD, SA, and SV were correlated with restenosis. SV was inversely correlated with an independent predictor of restenosis in patients treated with a bare-metal stent.
Resumo:
Angioplasty procedures are increasingly used to reestablish blood flow in blocked atherosclerotic coronary arteries. A serious complication of these procedures is reocclusion (restenosis), which occurs in 30–50% of patients. Migration of coronary artery smooth muscle cells (CASMCs) to the site of injury caused by angioplasty and subsequent proliferation are suggested mechanisms of reocclusion. Using both cultured human CASMCs and coronary atherectomy tissues, we studied the roles of osteopontin (OPN) and one of its receptors, αvβ3 integrin, in the pathogenesis of coronary restenosis. We also measured the plasma levels of OPN before and after angioplasty and determined the effect of exogenous OPN on CASMC migration, extracellular matrix invasion, and proliferation. We found that cultured CASMCs during log phase of growth and smooth muscle cell layer of the coronary atherosclerotic tissues of patients express both OPN mRNA and protein at a significantly elevated level compared with controls. Interestingly, whereas the baseline plasma OPN levels in control samples were virtually undetectable, those in patient plasma were remarkably high. We also found that interaction of OPN with αvβ3 integrin, expressed on CASMCs, causes migration, extracellular matrix invasion, and proliferation. These effects were abolished when OPN or αvβ3 integrin gene expression in CASMCs was inhibited by specific antisense S-oligonucleotide treatment or OPN-αvβ3 interaction was blocked by treatment of CASMCs with antibodies against OPN or αvβ3 integrin. Our results demonstrate that OPN and αvβ3 integrin play critical roles in regulating cellular functions deemed essential for restenosis. In addition, these results raise the possibility that transient inhibition of OPN gene expression or blocking of OPN-αvβ3 interaction may provide a therapeutic approach to preventing restenosis.
Resumo:
Stent implantation produces a systemic increase of inflammatory markers that correlates with Chlamydophila pneumoniae infection in atherosclerotic plaque. We performed a clinical intervention study to investigate the effect of antibiotic treatment on 6-month follow-up angiographic minimal luminal diameter after stenting. Ninety patients were randomly assigned to oral azithromycin or placebo in a double-blinded and randomized fashion. Medication was initiated 2 weeks before a pre-scheduled stenting procedure and maintained 12 weeks thereafter. Angiographic outcomes were evaluated by a six-month follow-up angiography and laboratorial parameters were accessed by blood sampling 2 weeks before stenting, within the first 24 h after procedure and additional samples after four weeks and 6 months. Minimal luminal diameter (1.76 +/- A 0.56 mm Vs. 1.70 +/- A 0.86 mm; P = 0.7), restenosis rate, diameter stenosis, late loss, and binary restenosis rates were comparable in placebo and azithromycin group in the 6 months follow-up. Serum levels of C-reactive protein presented a three fold significant increase in the control group one day after stenting but did not change in the azithromycin group (8.5 [3.0;16.4] Vs. 2.9 [1.7;6.6]-median [25;75 percentile] P < 0.01). Azithromycin does not improve late angiographic outcomes but attenuates the elevation of C-reactive protein levels after stenting, indicating an anti-inflammatory effect.
Resumo:
BACKGROUND/AIMS: Restenosis after percutaneous transluminal angioplasty (PTA) of the internal mammary artery (IMA) grafts is much less pronounced than in other arteries and venous grafts. The aim of the study was to test whether various arteries respond differently to dilatation. METHODS: PTA of the IMA, carotid, renal and circumflex coronary (RCx) arteries was performed in 9 pigs (balloon to artery ratio of 1:1.5). After 8 weeks, angiography was repeated and vessels prepared for histological analysis. Immunohistochemical staining was done to examine proliferative activity (Ki67) and to identify the vasa vasorum of the adventitia (F VIII-RA). RESULTS: The intima-media ratio after PTA was lowest in the IMA (0.06), followed by the carotid (0.27) and renal arteries (0.49) and the RCx (0.69). Proliferation of the intima was seen at 287 degrees of the vessel circumference in the RCx, at 286 degrees in the renal and at 166 degrees in the carotid artery. No proliferative activity was seen in the IMA. The intima-adventitia ratio was lower in the IMA than in the RCx and renal arteries (p < 0.05). CONCLUSION: Intima proliferation after PTA varies between the different vessels, with best results seen in the IMA. There are differences in remodeling after PTA between muscular, muscular/elastic and elastic arteries.
Resumo:
Drug eluting stent (DES) restenosis has emerged as a significant clinical entity owing to the increasing use of DES in complex lesions and patients. However, to date, there is a paucity of studies that have addressed the management of DES restenosis and the resulting outcome, leaving the interventional cardiologist with a therapeutic dilemma. The purpose of this paper is therefore to provide a concise review of available data's dealing with the treatment of DES restenosis, including the outcome of patients treated for DES restenosis, the prognostic importance of the angiographic pattern and the available therapeutic modalities.
Resumo:
We studied the effect of oral sirolimus, administered to prevent and treat in-stent restenosis (ISR), on the variation of serum levels of inflammatory markers following coronary stenting with bare metal stents. The mean age of the patients was 56 ± 13 years, 65% were males and all had clinically manifested ischemia. Serum levels of high sensitivity C-reactive protein (hs-CRP) concentration were determined by chemiluminescence and serum levels of all other biomarkers by ELISA. One group of patients at high risk for ISR received a loading oral dose of 15 mg sirolimus and 5 mg daily thereafter for 28 days after stenting (SIR-G). A control group (CONT-G) was submitted to stenting without sirolimus therapy. The increase in hs-CRP concentration was highest at 24 h after stenting in both groups. A significant difference between SIR-G and CONT-G was observed at 4 weeks (-1.50 ± 5.0 vs -0.19 ± 0.4, P = 0.008) and lost significance 1 month after sirolimus discontinuation (-1.73 ± 4.3 vs -0.01 ± 0.7, P = 0.0975). A continuous fall in MMP-9 concentration was observed in SIR-G, with the greatest reduction at 4 weeks (-352.9 ± 455 vs +395.2 ± 377, P = 0.0004), while a positive variation was noted 4 weeks after sirolimus discontinuation (227 ± 708 vs 406.2 ± 472.1, P = 0.0958). SIR-G exhibited a higher increase in P-selectin after sirolimus discontinuation at week 8 (46.1 ± 67.9 vs 5.8 ± 23.7, P = 0.0025). These findings suggest that the anti-restenotic actions of systemic sirolimus include anti-proliferative effects and modulation of the inflammatory response with inhibition of adhesion molecule expression.
Resumo:
Platelet-derived microparticles that are produced during platelet activation are capable of adhesion and aggregation. Endothelial trauma that occurs during percutaneous transluminal coronary angioplasty (PTCA) may support platelet-derived microparticle adhesion and contribute to development of restenosis. We have previously reported an increase in platelet-derived microparticles in peripheral arterial blood with angioplasty. This finding raised concerns regarding the role of platelet-derived microparticles in restenosis, and therefore the aim of this study was to monitor levels in the coronary circulation. The study population consisted of 19 angioplasty patients. Paired coronary artery and sinus samples were obtained following heparinization, following contrast administration, and subsequent to all vessel manipulation. Platelet-derived microparticles were identified with an anti-CD61 (glycoprotein IIIa) fluorescence-conjugated antibody using flow cytometry. There was a significant decrease in arterial platelet-derived microparticles from heparinization to contrast administration (P=0.001), followed by a significant increase to the end of angioplasty (P=0.004). However, there was no significant change throughout the venous samples. These results indicate that the higher level of platelet-derived microparticles after angioplasty in arterial blood remained in the coronary circulation. Interestingly, levels of thrombin-antithrombin complexes did not rise during PTCA. This may have implications for the development of coronary restenosis post-PTCA, although this remains to be determined.
Resumo:
AIMS: To evaluate the long-term clinical outcomes following percutaneous coronary intervention (PCI) with the Genous stent in an unselected population. METHODS: All patients admitted to a single center who underwent PCI using the GS exclusively, between May 2006 and May 2012, were enrolled, and a clinical follow-up of up to 60 months was carried out. The primary endpoint of major adverse cardiac event (MACE) rate was defined as the composite of cardiac death, acute myocardial infarction (AMI), and target lesion revascularization (TLR). RESULTS: Of the 450 patients included (75.1% male; 65.5 ± 11.7 years), 28.4% were diabetic and acute coronary syndrome was the reason for PCI in 76.4%. Angioplasty was performed in 524 lesions using 597 Genous stents, with angiographic success in 97.1%. At a median of 36 months of follow-up (range, 1-75 months), MACE, AMI, TLR, stent restenosis (SR), and stent thrombosis (ST) rates were 15.6%, 8.4%, 4.4%, 3.8%, and 2.2%, respectively. Between 12 and 24 months, the TLR, SR, and ST rates practically stabilized, up to 60 months. Bifurcation lesions were independently associated with MACE, TLR, and SR. CONCLUSION: This is the first study reporting clinical results with the Genous stent up to 60 months. The Genous stent was safe and effective in the long-term, in an unselected population.
Resumo:
High-dose dobutamine magnetic resonance stress testing has been shown to be superior to dobutamine stress echocardiography for diagnosis of coronary artery disease (CAD). We determined the feasibility of quantitative myocardial tagging during low- and high-dose dobutamine stress and tested the ability of global systolic and diastolic quantitative parameters to identify patients with significant CAD. Twenty-five patients suspected of having significant CAD were examined with a standard high-dose dobutamine/atropine stress magnetic resonance protocol (1.5-T scanner, Philips). All patients underwent invasive coronary angiography as the standard of reference for the presence (n = 13) or absence (n = 12) of significant CAD. During low-dose dobutamine stress, systolic (circumferential shortening, systolic rotation, and systolic rotation velocity) and diastolic (velocity of circumferential lengthening and diastolic rotation velocity) parameters changed significantly in patients without CAD (all P < 0.05 vs. rest) but not in patients with CAD. Identification of patients without and with CAD during low-dose stress was possible using the diastolic parameter of "time to peak untwist." At high-dose stress, none of the global systolic or diastolic parameters showed the potential to identify the presence of significant CAD. With myocardial tagging, a quantitative analysis of systolic and diastolic function was feasible during low- and high-dose dobutamine stress. In our study, the diastolic parameter of time to peak untwist as assessed during low-dose dobutamine stress was the most promising global parameter for identification of patients with significant CAD. Thus quantitative myocardial tagging may become a tool that reduces the need for high-dose dobutamine stress.
Resumo:
OBJETIVE: With the increased use of intracoronary stents, in-stent restenosis has become a clinically significant drawback in invasive cardiology. We retrospectively assessed the short- and long-term outcomes after excimer laser coronary angioplasty of in-stent restenosis. METHODS: Twenty-five patients with 33 incidents of in-stent restenosis treated with excimer laser coronary angioplasty (ELCA) were analyzed. Sixty-six percent were males, mean age of 73±11 years, and 83% were functional class III-IV (NYHA). ELCA was performed using 23 concentric and 10 eccentric catheters with a diameter of 1.6-2.2 mm, followed by balloon angioplasty (PTCA) and ultrasound monitoring. The procedure was performed in the following vessels: left anterior descending artery, 10; left circumflex artery, 8; right coronary artery, 6; left main coronary artery, 2; and venous bypass graft, 7. RESULTS: The ELCA was successful in 71% of the cases, and PTCA was 100% successful. The diameter of the treated vessels was 3.44±0.5mm; the minimal luminal diameter (MLD) increased from 0.30mm pre-ECLA to 1.97mm post-ELCA, and to 2.94mm post-PTCA (p<0.001). The percent stenosis was reduced from 91.4±9.5% before ECLA to 42.3±14.9% after ELCA and to 14.6 ± 9.3% after PTCA (p<0.001). Seventeen (68%) patients were asymptomatic at 6 months and 15 (60%) at 1 year. New restenosis rates were 8/33 (24.2%) at 6 months and 9 /33 (27.3%) at 12 months. CONCLUSION: ELCA is safe and effective for the treatment of in-stent restenosis. In the present sample, a slight increase in new restenotic lesions between 6 and 12 months was found.
Resumo:
RESUME : Actuellement la brachythérapie endovasculaire reste le seul traitement efficace pour la resténose intrastent. Malgré ceci, la limitation majeure de cette technique est la resténose aux extrémités du stent (effet de bord) due à une couverture incomplète par la source radioactive (geographical miss). Le ballon coupant et qui ne glisse pas pourrait limiter le barotraumatisme engendré par la dilatation et qui avec la diminution de la radiation aux extrémités de la source radioactive, est à la base du geographical miss. Cette étude prospective a pour but d'examiner l'efficacité du traitement de la resténose intrastent par la combinaison d'angioplastie avec cutting ballon et β - irradiation. Le registre « Radiation in Europe NOvoste » (RENO) inclut tous les patients traités par β - irradiation coronaire avec le système Beta-CathTM System (Novoste Corporation, Brussels, Belgium) n'ayant pas été inclus dans une autre étude randomisée. Un premier sous-groupe de ces patients (groupe 1, n=166), représente les patients traités par cutting ballon et β - irradiation intra coronaire. Ce groupe a été défini d'une manière prospective et les résultats cliniques à 6 mois ont été comparés par rapport aux autres patients qui ont reçu un traitement par dilatation coronaire conventionnelle et β - irradiation (groupe 2, n=712). A 6 mois de suivi, on a retrouvé une différence significative entre les 2 groupes par rapport à la nécessité d'une nouvelle revascularisation du vaisseau préalablement traité (10,2% de récidive dans le groupe 1 contre 16,6 % dans le groupe 2 , p=0,04). Le nombre d'événements cardiaques majeurs (mortalité, infarctus du myocarde et revascularisation) a également été diminué de manière significative (10,8% contre 19,2% ; />=0,01). Cette observation a été confirmée par une analyse multivariée qui indique un risque diminué pour les événements cardiaques majeurs à 6 mois, (rapport de côtes : 0,49 ; intervalle de confiance 0,27-0,88 ; p=0,02). Comparé à l'angioplastie coronarienne avec ballon conventionnel, l'utilisation de cutting ballon avant la β - irradiation dans le traitement de la resténose intrastent démontre une meilleure évolution clinique à 6 mois. ABSTRACT: At present, vascular brachytherapy is the only efficient therapy for in-stent restenosis. Nevertheless edge restenosis often relat¬ed to geographical miss has been identified as a major limitation of the technique. The non-slippery cutting balloon has the potential to limit vascular barotraumas which, together with low-dose irradiation at both ends of the radioactive source, are the prerequisite for geographical miss. This prospective study aimed to examine the efficacy of combining cut¬ting balloon angioplasty and brachytherapy for in-stent restenosis. The Radiation in Europe NOvoste (RENO) registry prospectively tracked all patients who had been treated by coronary β-radiation with the Beta-CathTM System (Novoste Corporation. Brussels, Belgium) but were not included in a randomized radiation trial, A subgroup of patients with in-stent restenosis treated by cutting balloon angioplasty and coronary β-radiation (group 1, n = 166) was prospectively defined, and clinical outcomes of patients at 6 months were compared with those of patients treated by conventional angioplasty and coronary β -radiation (group 2, n = 712). At 6-month follow-up, there was a significant difference between groups 1 and 2 in- target vessel revascularization (10.2% versus 16.6% respectively; p = 0.04) and in the incidence of major adverse clinical events (MACE) including, death, myocardial infarction, and revascularization (10.8% versus 19.2%; p= 0.01). This observation was confirmed by a multivariate analysis indicating a. lower risk for MACE at 6 months (odds ratio: 0.49; confidence intervals: 0.27-0.88; p = 0.02). Compared to conventional angioplasty, cutting balloon angio¬plasty prior to coronary beta-radiation with the Beta-CathTM System seems to improve the 6-month clinical outcome in patients with in-stent restenosis.
Resumo:
The benefit of the coronary collateral circulation (natural bypass network) on survival is well established. However, data derived from smaller studies indicates that coronary collaterals may increase the risk for restenosis after percutaneous coronary interventions. The purpose of this systematic review and meta-analysis of observational studies was to explore the impact of the collateral circulation on the risk for restenosis.