944 resultados para copper vapor laser radiation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study is to analyze the effects of copper vapor laser radiation on the radicular wall of human teeth. Materials and Methods: Immediately after the crowns of 10 human uniradicular teeth were cut along the cement-enamel junction, a chemical-surgical preparation of the radicular canals was completed. Then the roots were longitudinally sectioned to allow for irradiation of the surfaces of the dentin walls of the root canals. The hemi-roots were separated into two groups: one (control) with five hemi-roots that were not irradiated, and another (experimental) with 15 hemi-roots divided into three subgroups that were submitted to the following exposure times: 0.02,0.05, and 0.1 s. A copper vapor laser (510.6 nm) with a total average power of 6.5 W in green emission, frequency of 16.000 Hz, and pulse duration of 30 ns was used. Results: The results obtained by scanning electron microscope analysis showed the appearance of a cavity in the region of laser beam impact, with melting, recrystallization, and cracking on the edges of the dentin of the cavity due to heat diffusion. Conclusions: We determined that the copper vapor laser produces significant morphologic changes in the radicular wall of human teeth when using the parameters in this study. However, further research should be done to establish parameters that are compatible with dental structure in order to eliminate thermal damages. © Mary Ann Liebert, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: A morphological and ultra-structural study of copper vapor laser (λ = 510.6 nm) effects on enamel and dentine was performed to show the effects of this radiation. Methods: A total of 15 human molars were cut in half; 15 pieces were separated for irradiation on enamel and 15 for dentine. These two groups were further divided into five experimental groups, including a control group, comprised of three half-sections each, irradiated by a CVL laser with a power of 7 W, a repetition rate of 15,000 pulses/sec and exposed at 500, 600, and 800 msec and 1 sec irradiation times with a 5-sec interval between irradiations. Results: In an ultra-structural SEM exam, we observed that on the enamel surfaces irradiated for 1 sec there was morphological alteration that consisted of catering, flaking, and melting on the surfaces. There was no alteration for the other exposure times. On the dentine teeth irradiated for 1 sec, we observed an evident ultra-structural alteration of melted tissue and loss of morphological characteristics. In the dentine group irradiated by 800 msec, we observed ablation and a partial loss of morphological characteristics. In the dentine groups irradiated by 500 and 600 msec, no alteration was observed. Conclusions: The results showed that irradiation with CVL promoted morphologic changes in the enamel as well as in the dentine and demonstrated a need for future studies in order to establish a safe protocol for further use in the odontological practice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The interaction phenomena of nanosecond Q-switched diode-pumped solid state (DPSS) laser using 355nm radiation with 0.2mm thick 316L stainless steel foil was investigated at incident laser fluence range of 19 - 82Jcm-2. The characterization study was performed with and without the use of assist gas by utilizing micro supersonic minimum length nozzles (MLN), specifically designed for air at inlet chamber pressure of 8bar. MLN ranged in throat diameters of 200μm, 300μm, and 500μm respectively. Average etch rate per pulse under the influence of three micro supersonic impinging jets, for both oxygen and air showed the average etch rate was reduced when high-speed gas jets were utilized, compared to that without any gas jets, but significant variation was noticed between different jet sizes. Highest etch rate and quality was achieved with the smallest diameter nozzle, suggesting that micro nozzles can produce a viable process route for micro laser cutting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using Nd: YAG laser (532 nm) pumped mixed-dye laser. we obtained the output of this dye enhanced at the wavelength interval equivalent to that given by the copper vapor laser pumped dye laser. This measure favored is with the measurement of single-color three-photon resonant ionization spectrum of atomic uranium in the range of 562-586 nm,which is otherwise not efficiently covered by Nd: YAG laser pumped dye laser with any single dye. Thus 140 U I energy levels were obtained and the peaks of interest 575.814 nm and 575.836 rim were well resolved and their relative intensity determined.